IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1330-d1461528.html
   My bibliography  Save this article

A Multi-Scenario Analysis of Urban Vitality Driven by Socio-Ecological Land Functions in Luohe, China

Author

Listed:
  • Xinyu Wang

    (Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary)

  • Tian Bai

    (College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China)

  • Yang Yang

    (Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary)

  • Guifang Wang

    (Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary)

  • Guohang Tian

    (College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China)

  • László Kollányi

    (Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary)

Abstract

Urban Vitality (UV) is a critical indicator for measuring sustainable urban development and quality. It reflects the dynamic interactions and supply–demand coordination within urban systems, especially concerning the human–land relationship. This study aims to quantify the UV of Luohe City, China, for the year 2023, analyze its spatial characteristics, and investigate the driving patterns of socio-ecological land functions on UV intensity and heterogeneity under different scenarios. Utilizing multi-source data, including human mobility data from Baidu Location-Based Services (LBSs), Landsat-9, MODIS, and diverse geo-information datasets, we conducted factor screening and comprehensive assessments. Firstly, Self-Organizing Maps (SOMs) were employed to identify typical activity patterns, and the Urban Vitality Index (UVI) was calculated based on Human Mobility Intensity (HMI) data. Subsequently, a framework for quantity–quality–structure assessments weighted and aggregated sub-indicators to evaluate the Land Social Function (LSF) and Land Ecological Function (LEF). Following the screening process, a Multi-scale Geographically Weighted Regression (MGWR) was applied to analyze the scale and driving relationships between UVI and the land assessment sub-indicators. The results were as follows: (1) The UV distribution in Luohe City was highly uneven, with high vitality areas concentrated within the built-up regions. (2) UV showed significant correlations with both LSF and LEF. The influence of LSF on UV was stronger than that of LEF, with the effectiveness of LEF relying on the well-established provisioning of LSF. (3) Artificial Surface Ratio (ASR) and Corrected Night Lights (LERNCI) were identified as key drivers of UV across multiple scenarios. Under the weekend scenario, the Green Space Ratio (GSR) and the Vegetation Quality (VQ) notably enhanced the attractiveness of human activities. (4) The impacts of drivers varied at the urban, township, and street scales. The analysis focuses on factors with significant bandwidth changes across multiple scenarios: VQ, Remote-Sensing-based Ecological Index (RSEI), GSR, ASR, and ALSI. This study underscores the importance of socio-ecological land functions in enhancing urban vitality, offering valuable insights and data support for urban planning.

Suggested Citation

  • Xinyu Wang & Tian Bai & Yang Yang & Guifang Wang & Guohang Tian & László Kollányi, 2024. "A Multi-Scenario Analysis of Urban Vitality Driven by Socio-Ecological Land Functions in Luohe, China," Land, MDPI, vol. 13(8), pages 1-22, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1330-:d:1461528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federico Caprotti & Robert Cowley & Ayona Datta & Vanesa Castán Broto & Eleanor Gao & Lucien Georgeson & Clare Herrick & Nancy Odendaal & Simon Joss, 2017. "The New Urban Agenda: key opportunities and challenges for policy and practice," Urban Research & Practice, Taylor & Francis Journals, vol. 10(3), pages 367-378, July.
    2. Thomas L. Saaty, 1987. "Risk—Its Priority and Probability: The Analytic Hierarchy Process," Risk Analysis, John Wiley & Sons, vol. 7(2), pages 159-172, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Kovacs-Györi & Pablo Cabrera-Barona & Bernd Resch & Michael Mehaffy & Thomas Blaschke, 2019. "Assessing and Representing Livability through the Analysis of Residential Preference," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    2. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    3. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    4. Patrick Krieger & Carsten Lausberg, 2021. "Entscheidungen, Entscheidungsfindung und Entscheidungsunterstützung in der Immobilienwirtschaft: Eine systematische Literaturübersicht [Decisions, decision-making and decisions support systems in r," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 7(1), pages 1-33, April.
    5. Jonathon Taylor & Andy Haines & James Milner & Mike Davies & Paul Wilkinson, 2018. "A Comparative Analysis of Global Datasets and Initiatives for Urban Health and Sustainability," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    6. Qi Wei & Rui Wang & Chuan-Yang Ruan, 2024. "Similarity Measures of Probabilistic Interval Preference Ordering Sets and Their Applications in Decision-Making," Mathematics, MDPI, vol. 12(20), pages 1-26, October.
    7. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    8. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    9. Roberta Sonnino & Helen Coulson, 2021. "Unpacking the new urban food agenda: The changing dynamics of global governance in the urban age," Urban Studies, Urban Studies Journal Limited, vol. 58(5), pages 1032-1049, April.
    10. Biancamaria Torquati & Giulia Giacchè & Tiziano Tempesta, 2020. "Landscapes and Services in Peri-Urban Areas and Choice of Housing Location: An Application of Discrete Choice Experiments," Land, MDPI, vol. 9(10), pages 1-21, October.
    11. Khan, Muhammad Salar & Jamil, Kamil & Malik, Ammar A., 2022. "Delivering Urban Mass Transit—The Case of Lahore, Pakistan," SocArXiv 2zj8m, Center for Open Science.
    12. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    13. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    14. Kamila Borsekova & Samuel Koróny & Peter Nijkamp, 2022. "In Search of Concerted Strategies for Competitive and Resilient Regions," Networks and Spatial Economics, Springer, vol. 22(3), pages 607-634, September.
    15. Michael Keith & Eugenie Birch & Nicolas J. A. Buchoud & Maruxa Cardama & William Cobbett & Michael Cohen & Thomas Elmqvist & Jessica Espey & Maarten Hajer & Gunnar Hartmann & Tadashi Matsumoto & Susan, 2023. "A new urban narrative for sustainable development," Nature Sustainability, Nature, vol. 6(2), pages 115-117, February.
    16. Ashraf Abdelkarim & Mohamed Hssan Hassan Abdelhafez & Khaled Elkhayat & Mohammad Alshenaifi & Sultan Alfraidi & Ali Aldersoni & Ghazy Albaqawy & Amer Aldamaty & Ayman Ragab, 2024. "Spatial Suitability Index for Sustainable Urban Development in Desert Hinterland Using a Geographical-Information-System-Based Multicriteria Decision-Making Approach," Land, MDPI, vol. 13(7), pages 1-37, July.
    17. Ahmed M. A. Shohda & Mahrous A. M. Ali & Gaofeng Ren & Jong-Gwan Kim & Ahmed M. Abdo & Wael R. Abdellah & Abbas M. Hassan, 2022. "Sustainable Assignment of Egyptian Ornamental Stones for Interior and Exterior Building Finishes Using the AHP-TOPSIS Technique," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    18. Alena Pauliková & Zdenka Gyurák Babeľová & Monika Ubárová, 2021. "Analysis of the Impact of Human–Cobot Collaborative Manufacturing Implementation on the Occupational Health and Safety and the Quality Requirements," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    19. Crecentia Pamidzai Gandidzanwa & Muchaiteyi Togo, 2022. "Adaptive Responses to Water, Energy, and Food Challenges and Implications on the Environment: An Exploratory Study of Harare," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    20. Khushboo Gupta & Wenwen Zhang & Ralph P Hall, 2021. "Risk priorities and their co-occurrences in smart city project implementation: Evidence from India’s Smart Cities Mission (SCM)," Environment and Planning B, , vol. 48(4), pages 880-894, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1330-:d:1461528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.