IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1236-d1452533.html
   My bibliography  Save this article

Land Use as a Crucial Resource for Smart Grids—The ‘Common Good’ of Renewables in Distributed Energy Systems

Author

Listed:
  • Maarten Wolsink

    (DebWo Independent Research, 26170 Buis les Baronnies, France
    Department of Geography, Planning and International Development Studies, University of Amsterdam, P.O. Box 15629, 1001 NC Amsterdam, The Netherlands)

Abstract

The energy transition involves transforming electricity supply systems. Smart grids are resilient, polycentric systems consisting of integrated, self-governed Microgrids including distributed energy systems (DES). Renewable energy requires high numbers and a huge variety of infrastructures, requiring large amounts of spaces, including land. Renewable energy flows and land are natural resources. This analysis applies Ostrom’s common pool resources (CPR) theory on the sustainable use of ecosystems and natural resources to explore DES as a “common good” with spaces and land as crucial scarce resources. Currently, electricity grids are monocultures with highly centralized and hierarchical governance structures, where the juxtaposition of electricity as public and private good is considered self-evident. The emergence of DES in smart Microgrids is disrupting these monocultures, which is one aspect of the full transformation from current centralized grids towards resilient, integrated Microgrids based on variety and adaptive capacity. The other component of the transformation concerns the essential resource of space. As land and other spaces, such as rooftops, are subject to diverse property regimes, CPR is also applicable for analyzing the required changes in property rights and land-use decision-making. Such changes are necessary to make sufficient space available for the infrastructures of community Microgrids.

Suggested Citation

  • Maarten Wolsink, 2024. "Land Use as a Crucial Resource for Smart Grids—The ‘Common Good’ of Renewables in Distributed Energy Systems," Land, MDPI, vol. 13(8), pages 1-26, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1236-:d:1452533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Küpers, Sophia & Batel, Susana, 2023. "Time, history and meaning-making in research on people's relations with renewable energy technologies (RETs) – A conceptual proposal," Energy Policy, Elsevier, vol. 173(C).
    2. Taghikhah, Firouzeh Rosa & Taghikhah, Masoud & Marshall, Jonathan Paul & Voinov, Alexey, 2024. "Navigating the community renewable energy landscape: An analytics-driven policy formulation," Applied Energy, Elsevier, vol. 362(C).
    3. Maarten Wolsink, 2018. "Co-production in distributed generation: renewable energy and creating space for fitting infrastructure within landscapes," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 542-561, May.
    4. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    5. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    6. Edella Schlager & Elinor Ostrom, 1992. "Property-Rights Regimes and Natural Resources: A Conceptual Analysis," Land Economics, University of Wisconsin Press, vol. 68(3), pages 249-262.
    7. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    8. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    9. Ramirez Camargo, Luis & Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang, 2019. "Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile," Applied Energy, Elsevier, vol. 250(C), pages 1548-1558.
    10. Stephen Hall & Andrew EG Jonas & Simon Shepherd & Zia Wadud, 2019. "The smart grid as commons: Exploring alternatives to infrastructure financialisation," Urban Studies, Urban Studies Journal Limited, vol. 56(7), pages 1386-1403, May.
    11. Tomasi, Silvia, 2022. "The (Non) impact of the Spanish “Tax on the Sun” on photovoltaics prosumers uptake," Energy Policy, Elsevier, vol. 168(C).
    12. Cristina Acosta & Mariana Ortega & Till Bunsen & Binod Prasad Koirala & Amineh Ghorbani, 2018. "Facilitating Energy Transition through Energy Commons: An Application of Socio-Ecological Systems Framework for Integrated Community Energy Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    13. Elizabeth Shove & Gordon Walker, 2007. "Caution! Transitions Ahead: Politics, Practice, and Sustainable Transition Management," Environment and Planning A, , vol. 39(4), pages 763-770, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    2. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    3. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    4. Herenčić, Lin & Kirac, Mislav & Keko, Hrvoje & Kuzle, Igor & Rajšl, Ivan, 2022. "Automated energy sharing in MV and LV distribution grids within an energy community: A case for Croatian city of Križevci with a hybrid renewable system," Renewable Energy, Elsevier, vol. 191(C), pages 176-194.
    5. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    6. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities," Energies, MDPI, vol. 16(2), pages 1-41, January.
    7. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    8. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Ela Romov & Na’ama Teschner, 2022. "A Place under the Sun: Planning, Landscape and Participation in a Case of a Solar Powerplant in the Israeli Desert," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    11. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
    12. Wang, Peiguang & Zhang, Zhaoyan & Fu, Lei & Ran, Ning, 2021. "Optimal design of home energy management strategy based on refined load model," Energy, Elsevier, vol. 218(C).
    13. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    14. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    15. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    16. Gerlach, Lisa & Bocklisch, Thilo & Verweij, Marco, 2023. "Selfish batteries vs. benevolent optimizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    17. Campos, Inês & Korsnes, Marius & Labanca, Nicola & Bertoldi, Paolo, 2024. "Can renewable energy prosumerism cater for sufficiency and inclusion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    18. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Haque, A.B.M. Mahfuzul & Visser, Leontine E. & Dey, Madan M., 2011. "Institutional Arrangements in Seasonal Floodplain Management under Community-based Aquaculture in Bangladesh," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 8(1), pages 1-19, June.
    20. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1236-:d:1452533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.