IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1176-d1446311.html
   My bibliography  Save this article

From Expansion to Shrinkage: An Assessment of the Carbon Effect from Spatial Reconfiguration of Rural Human Settlements in the Wuhan Metropolitan Area

Author

Listed:
  • Yingxue Rao

    (Research Base for Consolidating the Chinese National Community Consciousness of Four Ministries and Commissions, South-Central Minzu University, Wuhan 430074, China
    College of Public Administration, South-Central Minzu University, Wuhan 430074, China)

  • Chenxi Wu

    (College of Public Administration, South-Central Minzu University, Wuhan 430074, China)

  • Qingsong He

    (College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Nowadays, the reorganization of rural land-use space exhibits a dynamic process of expansion and shrinkage. Taking the Wuhan Metropolitan Area as an example, this study used the InVEST model to quantitatively assess changes in rural built-up land between 1995 and 2020 and its impact on regional carbon storage. Combined with the PLUS model, further simulations were carried out to predict the heterogeneous mechanisms of shrinkage and expansion of rural habitable space under three scenarios in 2030. The results indicate that the area of rural built-up land in the Wuhan Metropolitan Area showed an overall increasing trend, with shrinkage mainly concentrated in the Wuhan-Ezhou border, Tianmen, and southern Xiantao, while expansion displayed a decentralized point distribution. The PLUS model predicts that, in the scenario of rural built-up land expansion, a significant amount of cropland is encroached upon. This study provides a new perspective for understanding the impact of rural habitat changes on the carbon cycle. Future land management and planning should pay more attention to maintaining ecosystem services and considering the environmental effects of changes in rural built-up land layout.

Suggested Citation

  • Yingxue Rao & Chenxi Wu & Qingsong He, 2024. "From Expansion to Shrinkage: An Assessment of the Carbon Effect from Spatial Reconfiguration of Rural Human Settlements in the Wuhan Metropolitan Area," Land, MDPI, vol. 13(8), pages 1-20, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1176-:d:1446311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    2. Chengcheng Wang & Yanfang Liu & Xuesong Kong & Jiwei Li, 2017. "Spatiotemporal Decoupling between Population and Construction Land in Urban and Rural Hubei Province," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    3. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    4. Xiaoxin Zhang & Martin Brandt & Xiaowei Tong & Philippe Ciais & Yuemin Yue & Xiangming Xiao & Wenmin Zhang & Kelin Wang & Rasmus Fensholt, 2022. "A large but transient carbon sink from urbanization and rural depopulation in China," Nature Sustainability, Nature, vol. 5(4), pages 321-328, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    3. Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
    4. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    5. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    6. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    7. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    8. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    9. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    11. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    12. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    13. William Brock & Anastasios Xepapadeas, 2020. "The Economy, Climate Change and Infectious Diseases: Links and Policy Implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 811-824, August.
    14. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    15. Sophie Zhou & Frederick van der Ploeg & Rick van der Ploeg, 2023. "Structural Change and the Climate Risk Premium during the Green Transition," CESifo Working Paper Series 10840, CESifo.
    16. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    17. Jaakkola, Niko, 2019. "Carbon taxation, OPEC and the end of oil," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 101-117.
    18. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    19. Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 99(C), pages 93-112.
    20. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1176-:d:1446311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.