IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1147-d1443638.html
   My bibliography  Save this article

Optimizing Territorial Spatial Structures within the Framework of Carbon Neutrality: A Case Study of Wuan

Author

Listed:
  • Xiangxue Han

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Meichen Fu

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Jingheng Wang

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Sijia Li

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

Abstract

Climate change has become a major worldwide problem, and land use/cover change has consistently played a crucial role in impacting the carbon cycle within terrestrial ecosystems. Territorial spatial planning stands as a relatively good policy option for the low-carbon model. The spatial correlation between carbon emissions and land use was established through environmental parameters in this paper. The territorial spatial structures in 2035 and 2060 under two scenarios of natural evolution and low-carbon development were simulated through the PLUS model. The results indicate that the spatial pattern of decreasing carbon emissions centered on towns, cities, mines, and industries is related to regional economic development, the distribution of forests, and the urban ecological environment. The implementation of territorial spatial planning aids in achieving carbon neutrality, whereas the low-carbon development scenario is more focused on it, which can provide ideas for territorial spatial planning adjustments. Both scenarios result in a large area of fallow land, indicating some conflict between farmland protection and low-carbon development. Optimizing management measures, energy structure, and industrial layout and strengthening regional coordination are key to promoting low-carbon development. This study might be useful in formulating regional carbon-neutral policies and improving territorial spatial planning.

Suggested Citation

  • Xiangxue Han & Meichen Fu & Jingheng Wang & Sijia Li, 2024. "Optimizing Territorial Spatial Structures within the Framework of Carbon Neutrality: A Case Study of Wuan," Land, MDPI, vol. 13(8), pages 1-24, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1147-:d:1443638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haozhi Pan & Tianren Yang & Ying Jin & Sandy Dall’Erba & Geoffrey Hewings, 2021. "Understanding heterogeneous spatial production externalities as a missing link between land-use planning and urban economic futures," Regional Studies, Taylor & Francis Journals, vol. 55(1), pages 90-100, January.
    2. Li Li & Zhichao Chen & Shidong Wang, 2022. "Optimization of Spatial Land Use Patterns with Low Carbon Target: A Case Study of Sanmenxia, China," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    3. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    4. Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    2. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    3. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    4. Huanyu Chang & Bing Zhang & Jingyan Han & Yong Zhao & Yongqiang Cao & Jiaqi Yao & Linrui Shi, 2024. "Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China," Land, MDPI, vol. 13(7), pages 1-21, July.
    5. Luo, Haizhi & Zhang, Yiwen & Gao, Xinyu & Liu, Zhengguang & Song, Xia & Meng, Xiangzhao & Yang, Xiaohu, 2024. "Unveiling land use-carbon Nexus: Spatial matrix-enhanced neural network for predicting commercial and residential carbon emissions," Energy, Elsevier, vol. 305(C).
    6. Zigao He, 2023. "The Water–Energy–Carbon Coupling Coordination Level in China," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    7. Liang Li & Ying Xiang & Xinyue Fan & Qinxiang Wang & Yang Wei, 2023. "Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    8. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    9. Jie He & Jun Yang, 2023. "Spatial–Temporal Characteristics and Influencing Factors of Land-Use Carbon Emissions: An Empirical Analysis Based on the GTWR Model," Land, MDPI, vol. 12(8), pages 1-23, July.
    10. Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    11. Min Wang & Yiming An & Rupu Yang & Xiaoyu Shan & Liping Li & Xiangzhao Feng, 2024. "Analysis of the Coupling Coordinated Development of the Water-Soil-Energy-Carbon System in Northwest China," Land, MDPI, vol. 13(5), pages 1-16, May.
    12. Maowen Sun & Boyi Liang & Xuebin Meng & Yunfei Zhang & Zong Wang & Jia Wang, 2024. "Study on the Evolution of Spatial and Temporal Patterns of Carbon Emissions and Influencing Factors in China," Land, MDPI, vol. 13(6), pages 1-24, June.
    13. Xiaoping Li & Sai Hu & Lifu Jiang & Bing Han & Jie Li & Xuan Wei, 2023. "Spatiotemporal Patterns and the Development Path of Land-Use Carbon Emissions from a Low-Carbon Perspective: A Case Study of Guizhou Province," Land, MDPI, vol. 12(10), pages 1-17, October.
    14. Li, Ruishi & Zhao, Rongqin & Xie, Zhixiang & Xiao, Liangang & Chuai, Xiaowei & Feng, Mengyu & Zhang, Huifang & Luo, Huili, 2022. "Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power," Energy Policy, Elsevier, vol. 166(C).
    15. Rui Bian & Anzhou Zhao & Lidong Zou & Xianfeng Liu & Ruihao Xu & Ziyang Li, 2024. "Simulation and Prediction of Land Use Change and Carbon Emission under Multiple Development Scenarios at the City Level: A Case Study of Xi’an, China," Land, MDPI, vol. 13(7), pages 1-18, July.
    16. Liu, Yujie & Zhang, Jie & Qin, Ya, 2020. "How global warming alters future maize yield and water use efficiency in China," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    17. Xiangmin Zhang & Bin Yu & Hailong Yu & Zhuofan Li & Shen Luo & Jianwu Sun & Yong Fan, 2021. "Spatial Distribution and Geographical Mechanism of Natural Resources in China under the Orientation of the New Economic Demands," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    18. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    19. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    20. Zhe Gao & Jianming Ye & Xianwei Zhu & Miaomiao Li & Haijiang Wang & Mengmeng Zhu, 2024. "Characteristics of Spatial Correlation Network Structure and Carbon Balance Zoning of Land Use Carbon Emission in the Tarim River Basin," Land, MDPI, vol. 13(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1147-:d:1443638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.