IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1098-d1439438.html
   My bibliography  Save this article

Biomass of Shoots and Roots of Multicomponent Grasslands and Their Impact on Soil Carbon Accumulation in Arenosol Rich in Stones

Author

Listed:
  • Liudmila Tripolskaja

    (Voke Branch, Lithuanian Research Centre for Agriculture and Forestry, Zalioji 2, LT-02232 Vilnius, Lithuania)

  • Monika Toleikiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Aida Skersiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Agne Versuliene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania)

Abstract

To prevent the degradation of light-textured soils, it is advisable to use them for grasslands. These soil management systems help with the faster accumulation of soil organic carbon (SOC), thereby improving the soil’s properties and reducing carbon emissions from agricultural land. In this experiment, we studied the distribution of multi-component perennial grass roots in the Arenosol profile and their impact on SOC sequestration in temperate climate zones. Our research aimed to identify differences in root biomass at depths of 0–15 cm, 15–30 cm, and 30–50 cm and to assess their correlation with SOC and dissolved organic carbon (DOC) in the soil. The roots, shoots, and soil samples of fertilized and unfertilized grasslands were collected at the flowering stage and after the final grass harvest two years in a row. Our findings revealed that, in sandy loam Arenosol rich in stones, 12.4–15.9 Mg ha −1 of root biomass was accumulated at 0–50 cm of soil depth. The application of NPK fertilizers did not significantly affect grass root biomass, but significantly affected shoot biomass. Most roots (84–88%) were concentrated in the 0–15 cm layer. On average, 5.10–6.62 Mg ha −1 of organic carbon (OC) was stored in the roots of perennial grasses within 0–50 cm of soil depth. We found that the SOC content in the 0–50 cm soil layer correlated more strongly (r = 0.62, p < 0.001) with C accumulated in the roots of the corresponding layer than with shoot biomass (r = 0.41, p = 0.04). However, a significant correlation was found between DOC and shoot biomass (r = 0.68, p < 0.001) and between DOC and the biomass of residues (r = 0.71, p < 0.001), explaining the significant increase in DOC in the 30–50 cm soil layer and indicating the leaching of mobile soil organic matter (SOM) substances from the above-ground biomass using fertilizers.

Suggested Citation

  • Liudmila Tripolskaja & Monika Toleikiene & Aida Skersiene & Agne Versuliene, 2024. "Biomass of Shoots and Roots of Multicomponent Grasslands and Their Impact on Soil Carbon Accumulation in Arenosol Rich in Stones," Land, MDPI, vol. 13(7), pages 1-15, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1098-:d:1439438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
    2. Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė, 2023. "Trend for Soil CO 2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    2. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    3. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    4. repec:ags:ijag24:346816 is not listed on IDEAS
    5. Shamal Shasang Kumar & Owais Ali Wani & Binesh Prasad & Amena Banuve & Penaia Mua & Ami Chand Sharma & Shalendra Prasad & Abdul Raouf Malik & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Effects of Mulching on Soil Properties and Yam Production in Tropical Region," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    6. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. repec:idb:brikps:64718 is not listed on IDEAS
    8. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    9. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.
    10. Fang He & Linlin Shi & Jingcheng Tian & Lijuan Mei, 2021. "Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
    11. Muyanga, Milu & Jayne, T.S., 2014. "Effects of rising rural population density on smallholder agriculture in Kenya," Food Policy, Elsevier, vol. 48(C), pages 98-113.
    12. Brady, Mark & Hedlund, Katarina & Cong, Rong-Gang & Hemerik, Lia & Hotes, Stefan & Machado, Stephen & Mattsson, Lennart & Schulz, Elke & Thomsen, Ingrid K., 2015. "Valuing Supporting Soil Ecosystem Services in Agriculture: a Natural Capital Approach," MPRA Paper 112303, University Library of Munich, Germany.
    13. Mariana Regina Durigan & Maurício Roberto Cherubin & Plínio Barbosa De Camargo & Joice Nunes Ferreira & Erika Berenguer & Toby Alan Gardner & Jos Barlow & Carlos Tadeu dos Santos Dias & Diana Signor &, 2017. "Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    14. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    15. Mykola Kochiieru & Agnė Veršulienė & Virginijus Feiza & Dalia Feizienė & Kateryna Shatkovska & Irena Deveikytė, 2024. "The Action of Environmental Factors on Carbon Dioxide Efflux per Growing Season and Non-Growing Season," Sustainability, MDPI, vol. 16(11), pages 1-13, May.
    16. Jayne, T.S. & Mason, Nicole M. & Burke, William J. & Ariga, Joshua, 2016. "Agricultural Input Subsidy Programs in Africa: An Assessment of Recent Evidence," Food Security International Development Working Papers 245892, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    17. Giltrap, Donna L. & Kirschbaum, Miko U.F. & Liáng, Lìyǐn L., 2021. "The potential effectiveness of four different options to reduce environmental impacts of grazed pastures. A model-based assessment," Agricultural Systems, Elsevier, vol. 186(C).
    18. Niedermayr, A. & Schaller, L. & Kieninger, P. & Kantelhardt, J., 2018. "Integrating soil and climate-related aspects into the valuation of willingness to pay for public goods provided by agriculture in an intensive agricultural production region: The case of the Marchfeld," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276963, International Association of Agricultural Economists.
    19. Bleuler, Mira & Farina, Roberta & Francaviglia, Rosa & di Bene, Claudia & Napoli, Rosario & Marchetti, Alessandro, 2017. "Modelling the impacts of different carbon sources on the soil organic carbon stock and CO2 emissions in the Foggia province (Southern Italy)," Agricultural Systems, Elsevier, vol. 157(C), pages 258-268.
    20. Jayne, T.S. & Chamberlin, Jordan & Headey, Derek D., 2014. "Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis," Food Policy, Elsevier, vol. 48(C), pages 1-17.
    21. Heywood, Peter Frank & Turpin, Simon, 2013. "Variations in Soil Carbon Stocks with Texture and Previous Landuse in North-western NSW, Australia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 2(2).
    22. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.

    More about this item

    Keywords

    Arenosol ; carbon; nitrogen; leaching;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1098-:d:1439438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.