IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p870-d1416076.html
   My bibliography  Save this article

Effects of Environmentally Friendly Materials on Saline Soil Improvement and Sunflower Yields in the Hetao Irrigation Region, China

Author

Listed:
  • Xiangping Wang

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    These authors contributed equally to this work.)

  • Yunpeng Sun

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    These authors contributed equally to this work.)

  • Yuxing Liu

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    College of Agriculture, Yangtze University, Jingzhou 434025, China)

  • Xiaolin Li

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    School of Ecology and Environment, Ningxia University, Yinchuan 750021, China)

  • Qiancheng Gao

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Jingsong Yang

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Wenping Xie

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Rongjiang Yao

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract

The Hetao irrigation region is located in Inner Mongolia, China, within a dry and semi-dry region. This region suffers from poor agricultural productivity and environmental damage due to the presence of saline soil. To explore the growth of salty lands using a more environmentally friendly method, this research employed three eco-conscious amendments to improve the soil. These include flue gas desulfurization gypsum (S), humic acid (H), and biochar (C). During a two-year study, the amendments were utilized to enhance the soil quality for planting sunflowers. Humic acid was used prior to every seedling season, whereas the remaining two substances were only used once. These additions increased the soil’s water-holding capacity, reduced soil salinity during sunflower growth, and improved the macroaggregate proportion. The most effective treatment for decreasing the soil’s salt content after the seedling stage was the application of humic acid (0.6 t ha −1 ). Biochar (15 t ha −1 ) decreased the soil’s bulk density (from 1.49 to 1.34 g cm −3 ) and mostly increased the sunflower seed yield up to 3133−3964 kg ha −1 . Humic acid addition significantly increased the aggregate (>0.25 mm) content up to 27.88% after the experiment, but it led to a lower seed yield (2607−3686 kg ha −1 ). In 2019, the temperature was lower compared to 2018, which may have led to a reduction in the yield. However, these three amendments could potentially increase yields by more than conventional methods. These three environmentally friendly amendments are useful for improving saline soil and increasing yields. More studies are required to understand their impacts on larger areas and over extended periods.

Suggested Citation

  • Xiangping Wang & Yunpeng Sun & Yuxing Liu & Xiaolin Li & Qiancheng Gao & Jingsong Yang & Wenping Xie & Rongjiang Yao, 2024. "Effects of Environmentally Friendly Materials on Saline Soil Improvement and Sunflower Yields in the Hetao Irrigation Region, China," Land, MDPI, vol. 13(6), pages 1-13, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:870-:d:1416076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Qi, Zhijuan & Feng, Hao & Zhao, Ying & Zhang, Tibin & Yang, Aizheng & Zhang, Zhongxue, 2018. "Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 219-231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    3. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    5. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    7. Wang, JiaJia & Long, HuaiYu & Huang, YuanFang & Wang, XiangLing & Cai, Bin & Liu, Wei, 2019. "Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    9. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Sun, Libo & Chang, Xiaomin & Yu, Xinxiao & Jia, Guodong & Chen, Lihua & Wang, Yusong & Liu, Ziqiang, 2021. "Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).
    12. Guo, Leilei & Wang, Zaimin & Šimůnek, Jirka & He, Yujiang & Muhamma, Rizwan, 2023. "Optimizing the strategies of mulched brackish drip irrigation under a shallow water table in Xinjiang, China, using HYDRUS-3D," Agricultural Water Management, Elsevier, vol. 283(C).
    13. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    14. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    15. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    16. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    17. Weiying Feng & Jiayue Gao & Rui Cen & Fang Yang & Zhongqi He & Jin Wu & Qingfeng Miao & Haiqing Liao, 2020. "Effects of Polyacrylamide-Based Super Absorbent Polymer and Corn Straw Biochar on the Arid and Semi-Arid Salinized Soil," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    18. Yerli, Caner & Sahin, Ustun & Ors, Selda & Kiziloglu, Fatih Mehmet, 2023. "Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Braunack, Michael V. & Filipović, Vilim & Adhikari, Raju & Freischmidt, George & Johnston, Priscilla & Casey, Phil S. & Wang, Yusong & Šimůnek, Jiří & Filipović, Lana & Bristow, Keith L., 2021. "Evaluation of a Sprayable Biodegradable Polymer Membrane (SBPM) Technology for soil water conservation in tomato and watermelon production systems," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Li Xu & Hongru Du & Xiaolei Zhang, 2019. "Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China," Sustainability, MDPI, vol. 11(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:870-:d:1416076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.