IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8317-d425572.html
   My bibliography  Save this article

Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka

Author

Listed:
  • Tharani Gopalakrishnan

    (School of Environmental and Rural Science, University of New England, Armidale 2351, Australia)

  • Lalit Kumar

    (School of Environmental and Rural Science, University of New England, Armidale 2351, Australia)

Abstract

Soil salinity is a major threat to land productivity, water resources and agriculture in coastal areas and arid and semi-arid regions of the world. This has a significantly negative effect on the land and causes desertification. Monitoring salt accumulation in the soil is crucial for the prevention of land degradation in such environments. This study attempted to estimate and map soil salinity in Jaffna Peninsula, a semi-arid region of Sri Lanka. A Partial Least Squares Regression (PLSR) model was constructed using Sentinel 2A satellite imagery and field-measured soil electrical conductivity (EC) values. The results showed that satisfactory prediction of the soil salinity could be made based on the PLSR model coupled with Sentinel 2A satellite imagery (R 2 = 0.69, RMSE = 0.4830). Overall, 32.8% of the land and 45% of paddy lands in Jaffna Peninsula are affected by salt. The findings of this study indicate that PLSR is suitable for the soil salinity mapping, especially in semi-arid regions like Jaffna Peninsula. The results underpin the importance of building adaptive capacity and implementing suitable preventive strategies for sustainable land and agricultural management.

Suggested Citation

  • Tharani Gopalakrishnan & Lalit Kumar, 2020. "Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8317-:d:425572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thiam, Sophie & Villamor, Grace B. & Kyei-Baffour, Nicholas & Matty, François, 2019. "Soil salinity assessment and coping strategies in the coastal agricultural landscape in Djilor district, Senegal," Land Use Policy, Elsevier, vol. 88(C).
    2. Tharani Gopalakrishnan & Lalit Kumar & Thushyanthy Mikunthan, 2020. "Assessment of Spatial and Temporal Trend of Groundwater Salinity in Jaffna Peninsula and Its Link to Paddy Land Abandonment," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    3. Khan, Nasir M. & Rastoskuev, Victor V. & Sato, Y. & Shiozawa, S., 2005. "Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 96-109, August.
    4. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    5. Ngawang Chhogyel & Lalit Kumar & Yadunath Bajgai, 2020. "Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhao & Kening Wu, 2021. "Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China," Agriculture, MDPI, vol. 11(7), pages 1-27, June.
    2. Sadia Shahid & Muhammad Shahbaz & Muhammad Faisal Maqsood & Fozia Farhat & Usman Zulfiqar & Talha Javed & Muhammad Fraz Ali & Majid Alhomrani & Abdulhakeem S. Alamri, 2022. "Proline-Induced Modifications in Morpho-Physiological, Biochemical and Yield Attributes of Pea ( Pisum sativum L.) Cultivars under Salt Stress," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    3. Tharani Gopalakrishnan & Lalit Kumar, 2021. "Linking Long-Term Changes in Soil Salinity to Paddy Land Abandonment in Jaffna Peninsula, Sri Lanka," Agriculture, MDPI, vol. 11(3), pages 1-12, March.
    4. Takalani Mulaudzi & Mulisa Nkuna & Gershwin Sias & Ibrahima Zan Doumbia & Njagi Njomo & Emmanuel Iwuoha, 2022. "Antioxidant Capacity of Chitosan on Sorghum Plants under Salinity Stress," Agriculture, MDPI, vol. 12(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    2. Tharani Gopalakrishnan & Lalit Kumar, 2021. "Linking Long-Term Changes in Soil Salinity to Paddy Land Abandonment in Jaffna Peninsula, Sri Lanka," Agriculture, MDPI, vol. 11(3), pages 1-12, March.
    3. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    4. Tong Su & Xinjun Wang & Songrui Ning & Jiandong Sheng & Pingan Jiang & Shenghan Gao & Qiulan Yang & Zhixin Zhou & Hanyu Cui & Zhilin Li, 2024. "Enhancing Soil Salinity Evaluation Accuracy in Arid Regions: An Integrated Spatiotemporal Data Fusion and AI Model Approach for Arable Lands," Land, MDPI, vol. 13(11), pages 1-20, November.
    5. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    6. Muhammad Hasan & Yanjun Shang & Mohamed Metwaly & Weijun Jin & Majid Khan & Qiang Gao, 2020. "Assessment of Groundwater Resources in Coastal Areas of Pakistan for Sustainable Water Quality Management Using Joint Geophysical and Geochemical Approach: A Case Study," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    7. Maxime Dumont & Guilhem Brunel & Paul Tresson & Jérôme Nespoulous & Hassan Boukcim & Marc Ducousso & Stéphane Boivin & Olivier Taugourdeau & Bruno Tisseyre, 2024. "Operational sampling designs for poorly accessible areas based on a multi-objective optimization method," Post-Print hal-04566087, HAL.
    8. Rosa Virginia Encinas Quille & Felipe Valencia de Almeida & Mauro Yuji Ohara & Pedro Luiz Pizzigatti Corrêa & Leandro Gomes de Freitas & Solange Nice Alves-Souza & Jorge Rady de Almeida & Maggie Davis, 2023. "Architecture of a Data Portal for Publishing and Delivering Open Data for Atmospheric Measurement," IJERPH, MDPI, vol. 20(7), pages 1-20, April.
    9. Sujith S. Ratnayake & Lalit Kumar & Punchi B. Dharmasena & Harsha K. Kadupitiya & Champika S. Kariyawasam & Danny Hunter, 2021. "Sustainability of Village Tank Cascade Systems of Sri Lanka: Exploring Cascade Anatomy and Socio-Ecological Nexus for Ecological Restoration Planning," Challenges, MDPI, vol. 12(2), pages 1-23, September.
    10. Weitao Lv & Xiasong Hu & Xilai Li & Jimei Zhao & Changyi Liu & Shuaifei Li & Guorong Li & Haili Zhu, 2024. "Multi-Model Comprehensive Inversion of Surface Soil Moisture from Landsat Images Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    11. Min Ma & Yi Hao & Qingchun Huang & Yongxin Liu & Liancun Xiu & Qi Gao, 2024. "Soil Salinity Estimation by 3D Spectral Space Optimization and Deep Soil Investigation in the Songnen Plain, Northeast China," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    12. Mohamed Elhedi Gharsallah & Hamouda Aichi & Talel Stambouli & Zouhair Ben Rabah & Habib Ben Hassine, 2022. "Assessment and mapping of soil salinity using electromagnetic induction and Landsat 8 OLI remote sensing data in an irrigated olive orchard under semi-arid conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 15-28.
    13. Thiam, Habibatou I. & Owusu, Victor & Villamor, Grace B. & Schuler, Johannes & Hathie, Ibrahima, 2024. "Farmers’ intention to adapt to soil salinity expansion in Fimela, Sine-Saloum area in Senegal: A structural equation modelling approach," Land Use Policy, Elsevier, vol. 137(C).
    14. Nguru, Wilson & Abera, Wuletawu & Ouedraogo, Issa & Chege, Christine & Kane, Babacar & Bougouma, Katiana & Mwongera, Caroline, 2023. "Spatial estimation of flood residual water cultivation (FRWC) potential for food security in Sédhiou and Tambacounda regions of Sénégal," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.
    16. Jiawen Hou & Mao Ye, 2022. "Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    17. Ramos, Tiago B. & Castanheira, Nádia & Oliveira, Ana R. & Paz, Ana Marta & Darouich, Hanaa & Simionesei, Lucian & Farzamian, Mohammad & Gonçalves, Maria C., 2020. "Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Lezíria Grande, Portugal," Agricultural Water Management, Elsevier, vol. 241(C).
    18. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Billal Hossen & Helmut Yabar & Md Jamal Faruque, 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh," Land, MDPI, vol. 11(10), pages 1-18, October.
    20. Shuai Li & Pu Guo & Fei Sun & Jinlei Zhu & Xiaoming Cao & Xue Dong & Qi Lu, 2024. "Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China," Land, MDPI, vol. 13(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8317-:d:425572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.