IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p839-d1413571.html
   My bibliography  Save this article

Study of the Decoupling Patterns between Agricultural Development and Agricultural Carbon Emissions in Beijing Tianjin Hebei Region from 2000 to 2020

Author

Listed:
  • Lina Liang

    (Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Hongjia Wang

    (Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

  • Heju Huai

    (Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

  • Xiumei Tang

    (Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

Abstract

The coordination and balance between agricultural development (AD) and agricultural carbon emissions (ACE) is one of the most important ways to boost the high-quality development of agriculture in the Beijing-Tianjin-Hebei region. Taking 13 prefecture-level cities in the Beijing-Tianjin-Hebei region as the research object, this study uses the comprehensive evaluation method and Tapio decoupling model to analyze the decoupling effect between the AD level and the Agricultural Carbon emissions intensity (ACEI) from 2000 to 2020, based on the assessment of AD status and the calculation of Agricultural Carbon emissions quantities (ACEQ) and ACEI. It found that: (1) From 2000 to 2020, the AD in the Beijing-Tianjin-Hebei region generally showcased a gradual increase trend, and demonstrated a basic feature that AD in the northern areas was higher than that in the southern ones. (2) From 2000 to 2020, the ACEQ in the Beijing-Tianjin-Hebei region showed a trend of first increasing and then decreasing, with a spatial distribution feature that the ACEQ in the southern cities was higher than that in the northern ones. Regarding the source of ACE, the livestock and poultry farming took the highest proportion. ACEI was decreasing year by year, higher in the southern areas than in the northern ones. (3) The main types of decoupling in the Beijing-Tianjin-Hebei region were strong decoupling, recession decoupling, strong negative decoupling, weak negative decoupling, recession coupling, and expansion negative coupling. The decoupling relationship between AD and ACEI were in dynamic change, but the change trend of the decoupling relationship was optimistic. The results of this study deliver certain deployable practice value for improving the sustainability of regional agricultural green development and ecological environmental protection.

Suggested Citation

  • Lina Liang & Hongjia Wang & Heju Huai & Xiumei Tang, 2024. "Study of the Decoupling Patterns between Agricultural Development and Agricultural Carbon Emissions in Beijing Tianjin Hebei Region from 2000 to 2020," Land, MDPI, vol. 13(6), pages 1-15, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:839-:d:1413571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeremiás Máté Balogh, 2023. "The impacts of agricultural subsidies of Common Agricultural Policy on agricultural emissions: The case of the European Union," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(4), pages 140-150.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Shulong Li & Zhizhang Wang, 2023. "The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China," Agriculture, MDPI, vol. 13(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjin Wu & Qianlei Yu & Yaping Chen & Jun Guan & Yule Gu & Anqi Guo & Hao Wang, 2024. "Land Management Scale and Net Carbon Effect of Farming in China: Spatial Spillover Effects and Threshold Characteristics," Sustainability, MDPI, vol. 16(15), pages 1-22, July.
    2. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    3. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    4. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    5. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    6. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    7. Jose Mendez & Lewis Gale, "undated". "A Note on the Empirical Relationship Between Trade, Growth and the Environment," Working Papers 2132836, Department of Economics, W. P. Carey School of Business, Arizona State University.
    8. Jingwen Lu & Lihua Dai, 2023. "Examining the Threshold Effect of Environmental Regulation: The Impact of Agricultural Product Trade Openness on Agricultural Carbon Emissions," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    9. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    10. Jikun Jiang & Shenglai Zhu & Weihao Wang, 2022. "Carbon Emissions, Economic Growth, Urbanization, and Foreign Trade in China: Empirical Evidence from ARDL Models," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    11. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-28, June.
    12. Felician A. Kitole & Jennifer K. Sesabo & Olufunmilola F. Adesiyan & A. O. Ige & Temitope O. Ojo & Chijioke U. Emenike & Nolwazi Z. Khumalo & Hazem S. Kassem & Khalid M. Elhindi, 2024. "Greening the Growth: A Comprehensive Analysis of Globalization, Economic Performance, and Environmental Degradation in Tanzania," Sustainability, MDPI, vol. 16(24), pages 1-19, December.
    13. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    14. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Ersin Yavuz & Emre Kilic & Abdullah Emre Caglar, 2024. "A new hypothesis for the unemployment-environment dilemma: is the environmental Phillips curve valid in the framework of load capacity factor in Turkiye?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29475-29492, November.
    16. Yao Zhao & Xuena Kong & Mahmood Ahmad & Zahoor Ahmed, 2023. "Digital Economy, Industrial Structure, and Environmental Quality: Assessing the Roles of Educational Investment, Green Innovation, and Economic Globalization," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    17. Coxhead, Ian A. & Jayasuriya, Sisira, 2003. "Trade, Liberalization, Resource Degradation and Industrial Pollution in Developing Countries: An Integrated Analysis," Staff Papers 12691, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    18. Yifeng Xie & Haitao Wu & Ruikuan Yao, 2023. "The Impact of Climate Change on the Urban–Rural Income Gap in China," Agriculture, MDPI, vol. 13(9), pages 1-17, August.
    19. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    20. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:839-:d:1413571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.