IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p780-d1406330.html
   My bibliography  Save this article

Spatial and Temporal Heterogeneity of Eco-Environmental Quality in Yanhe Watershed (China) Using the Remote-Sensing-Based Ecological Index (RSEI)

Author

Listed:
  • Lingda Zhang

    (School of Architecture, Chang’an University, Xi’an 710061, China)

  • Quanhua Hou

    (School of Architecture, Chang’an University, Xi’an 710061, China
    Engineering Research Center of Collaborative Planning of Low-Carbon Urban Space and Transportation, Universities of Shaanxi Province, Xi’an 710061, China)

  • Yaqiong Duan

    (School of Architecture, Chang’an University, Xi’an 710061, China
    Engineering Research Center of Collaborative Planning of Low-Carbon Urban Space and Transportation, Universities of Shaanxi Province, Xi’an 710061, China)

  • Sanbao Ma

    (Suide Soil and Water Conservation Scientific Experimental Station of Yellow River Water Conservancy Commission, Yulin 719000, China)

Abstract

The long-term impacts of climate change and human activities have resulted in the Yanhe watershed, a typical watershed in the Loess Plateau region, exhibiting a high degree of vulnerability and significant heterogeneity in ecological environmental quality. This has led to environmental degradation and complex socio-ecological challenges. Consequently, there is an urgent need to carry out research on the spatial and temporal differentiation patterns of ecological environment quality. By utilizing remote sensing data spanning 21 years, this study evaluated the evolutionary trends and consistency of ecological environment quality (EEQ) within the Yanhe watershed based on the remote-sensing-based ecological index (RSEI). Furthermore, it examined global and local spatial autocorrelation of the RSEI by constructing a hexagonal grid, thereby revealing the spatiotemporal characteristics of EEQ at different scales within the Yanhe watershed. The results were as follows: (1) The EEQ has exhibited an overall upward trend in the past two decades, while it has displayed significant fluctuations; (2) the Global Moran’s I values for the years 2000, 2010, and 2020 were 0.18, 0.32, and 0.21, respectively, indicating a presence of spatial autocorrelation within the RSEI; (3) the overall EEQ of the Yanhe watershed will continue to improve, although the ecological quality in certain areas remains unstable due to local natural conditions and human activities. This research not only contributes to the technical framework for analyzing the spatiotemporal heterogeneity of EEQ but also provides actionable insights for ecosystem restoration and sustainability within the Loess Plateau watershed. Our work advances the understanding of ecological dynamics in semi-arid regions and offers a model for assessing ecological quality in similar environmental contexts.

Suggested Citation

  • Lingda Zhang & Quanhua Hou & Yaqiong Duan & Sanbao Ma, 2024. "Spatial and Temporal Heterogeneity of Eco-Environmental Quality in Yanhe Watershed (China) Using the Remote-Sensing-Based Ecological Index (RSEI)," Land, MDPI, vol. 13(6), pages 1-20, May.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:780-:d:1406330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    2. Ming Shi & Fei Lin & Xia Jing & Bingyu Li & Yang Shi & Yimin Hu, 2023. "Ecological Environment Quality Assessment of Arid Areas Based on Improved Remote Sensing Ecological Index—A Case Study of the Loess Plateau," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    3. Pacheco de Castro Flores Ribeiro, Paulo & Osório de Barros de Lima e Santos, José Manuel & Prudêncio Rafael Canadas, Maria João & Contente de Vinha Novais, Ana Maria & Ribeiro Ferraria Moreira, Franci, 2021. "Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers," Agricultural Systems, Elsevier, vol. 191(C).
    4. Francesca Peroni & Guglielmo Pristeri & Daniele Codato & Salvatore Eugenio Pappalardo & Massimo De Marchi, 2019. "Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    5. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    6. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    8. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    9. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    10. Sui Zhang & Minghao Wang & Zhao Yang & Baolei Zhang, 2021. "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    11. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    12. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    13. Rafael Hologa & Nils Riach, 2020. "Approaching Bike Hazards via Crowdsourcing of Volunteered Geographic Information," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    14. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    15. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    16. Nogueira Terra, Talita & Ferreira dos Santos, Rozely, 2012. "Measuring cumulative effects in a fragmented landscape," Ecological Modelling, Elsevier, vol. 228(C), pages 89-95.
    17. Burdziej Jan, 2019. "Using hexagonal grids and network analysis for spatial accessibility assessment in urban environments – a case study of public amenities in Toruń," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 23(2), pages 99-110, June.
    18. Agnė Jasinavičiūtė & Darijus Veteikis, 2022. "Assessing Landscape Instability through Land-Cover Change Based on the Hemeroby Index (Lithuanian Example)," Land, MDPI, vol. 11(7), pages 1-18, July.
    19. Alessio Arleo & Christos Tsigkanos & Chao Jia & Roger A. Leite & Ilir Murturi & Manfred Klaffenboeck & Schahram Dustdar & Michael Wimmer & Silvia Miksch & Johannes Sorger, 2019. "Sabrina: Modeling and Visualization of Economy Data with Incremental Domain Knowledge," Papers 1908.07479, arXiv.org, revised Jan 2020.
    20. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:780-:d:1406330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.