IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p543-d1378478.html
   My bibliography  Save this article

Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China

Author

Listed:
  • Yun Chen

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Zhifeng Wang

    (Natural Resources Collection Center in Zhejiang Province, Department of Natural Resources of Zhejiang Province, Hangzhou 310007, China)

  • Kaijiang You

    (Natural Resources Collection Center in Zhejiang Province, Department of Natural Resources of Zhejiang Province, Hangzhou 310007, China)

  • Congmou Zhu

    (School of Public Affairs, Zhejiang Gongshang University, Hangzhou 310018, China)

  • Ke Wang

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Muye Gan

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Jing Zhang

    (Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China)

Abstract

Facility agriculture is an important initiative to adopt an all-encompassing approach to food and build a diversified food supply system. Understanding the evolution of facility agricultural land and the factors that drive it can contribute to the development of scientifically strategic agricultural planning and agricultural modernization. Therefore, this paper constructs a “situation-structure-behavior-value” theoretical framework; quantifies the relevant driving factors (physical, proximal, and socioeconomic) and their impacts on the development and layout of facility agriculture land by using a multivariate logistic regression model; and provides a strategy for optimizing land use. The results showed that the area of facility agriculture in Huzhou is rapidly expanding. Regarding drivers, facility agricultural land tends to be located in areas with higher slopes according to plot selection. Facility agriculture is more likely to develop in plots with convenient transportation and closer proximity to markets. At the economic level, economic efficiency, agricultural resource superiority, and policies significantly impact facility agriculture expansion. Finally, we propose three land use policy options to facilitate the sustainable development of facility agriculture. This study elucidates the underlying factors driving different types of facility agricultural land and offers methodological guidance for policy support, planning, control, and optimization strategies for facility agriculture.

Suggested Citation

  • Yun Chen & Zhifeng Wang & Kaijiang You & Congmou Zhu & Ke Wang & Muye Gan & Jing Zhang, 2024. "Trends, Drivers, and Land Use Strategies for Facility Agricultural Land during the Agricultural Modernization Process: Evidence from Huzhou City, China," Land, MDPI, vol. 13(4), pages 1-21, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:543-:d:1378478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Yue & Qian, Kui & Lin, Lin & Wang, Ke & Guan, Tao & Gan, Muye, 2020. "Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection," Land Use Policy, Elsevier, vol. 92(C).
    2. Marijn Verschelde & Marijke D’Haese & Glenn Rayp & Ellen Vandamme, 2013. "Challenging Small-Scale Farming: A Non-Parametric Analysis of the (Inverse) Relationship Between Farm Productivity and Farm Size in Burundi," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(2), pages 319-342, June.
    3. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(Supplemen), pages 72-87, January.
    4. Orgaz, F. & Fernandez, M.D. & Bonachela, S. & Gallardo, M. & Fereres, E., 2005. "Evapotranspiration of horticultural crops in an unheated plastic greenhouse," Agricultural Water Management, Elsevier, vol. 72(2), pages 81-96, March.
    5. Miyamoto, Motoe, 2006. "Forest conversion to rubber around Sumatran villages in Indonesia: Comparing the impacts of road construction, transmigration projects and population," Forest Policy and Economics, Elsevier, vol. 9(1), pages 1-12, November.
    6. Zhou, Yang & Guo, Liying & Liu, Yansui, 2019. "Land consolidation boosting poverty alleviation in China: Theory and practice," Land Use Policy, Elsevier, vol. 82(C), pages 339-348.
    7. Shenggen Fan & Connie Chan‐Kang, 2005. "Is small beautiful? Farm size, productivity, and poverty in Asian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 135-146, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Liu & Yaowu Li & Hui Bai & Kai Shang & Yixiu Deng & Junsong Mao, 2025. "Transformative Aspects of Agricultural Modernization and Its Land Use Requirements: Insights from Chinese Case Studies," Land, MDPI, vol. 14(2), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Ruhe & Zinda, John Aloysius & Ke, Shuifa, 2020. "Designating tree crops as forest: Land competition and livelihood effects mediate tree crops impact on natural forest cover in south China," Land Use Policy, Elsevier, vol. 96(C).
    2. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    3. Guo, Yuanzhi & Liu, Yansui, 2021. "Poverty alleviation through land assetization and its implications for rural revitalization in China," Land Use Policy, Elsevier, vol. 105(C).
    4. Yuanyuan Chen & Mingyao Cai & Zemin Zhang & Mu Li, 2024. "The Impact of Land Transfer-In on Crop Planting Structure and Its Heterogeneity among Farmers: Evidence from China," Land, MDPI, vol. 13(1), pages 1-15, January.
    5. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    6. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    7. Oda, M. & Umetsu, C. & Shen, J., 2018. "The impacts of regional differences on farmland consolidation in Japan: The case of Tohoku, Hokuriku and Kinki," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277389, International Association of Agricultural Economists.
    8. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    9. Yue-Hui Yu & Man-Man Peng, 2022. "Development and Poverty Dynamics in Severe Mental Illness: A Modified Capability Approach in the Chinese Context," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    10. Jia, Lili, 2012. "Land fragmentation and off-farm labor supply in China," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 66, number 66.
    11. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    12. Miyamoto, Motoe & Mohd Parid, Mamat & Noor Aini, Zakaria & Michinaka, Tetsuya, 2014. "Proximate and underlying causes of forest cover change in Peninsular Malaysia," Forest Policy and Economics, Elsevier, vol. 44(C), pages 18-25.
    13. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    14. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    15. Weiming Tong & Kevin Lo & Pingyu Zhang, 2020. "Land Consolidation in Rural China: Life Satisfaction among Resettlers and Its Determinants," Land, MDPI, vol. 9(4), pages 1-15, April.
    16. repec:ags:ijag24:346816 is not listed on IDEAS
    17. Shamal Shasang Kumar & Owais Ali Wani & Binesh Prasad & Amena Banuve & Penaia Mua & Ami Chand Sharma & Shalendra Prasad & Abdul Raouf Malik & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Effects of Mulching on Soil Properties and Yam Production in Tropical Region," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    18. Bernhard Dalheimer & Christoph Kubitza & Bernhard Brümmer, 2022. "Technical efficiency and farmland expansion: Evidence from oil palm smallholders in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1364-1387, August.
    19. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    20. Unknown, 2015. "Towards A Sustainable Soil Fertility Strategy in Ghana," Miscellaneous Publications 212898, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    21. Hongyu Wang & Xiaolei Wang & Apurbo Sarkar & Lu Qian, 2021. "Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China," Agriculture, MDPI, vol. 11(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:543-:d:1378478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.