IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p255-d1341230.html
   My bibliography  Save this article

Analysis of Urban Congestion Traceability: The Role of the Built Environment

Author

Listed:
  • Chenguang Li

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

  • Duo Wang

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

  • Hong Chen

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

  • Enze Liu

    (College of Transportation Engineering, Chang’an University, Xi’an 710064, China)

Abstract

Analyzing the factors influencing traffic congestion is essential for urban planning and coordinated development. Previous research frequently focuses on the internal aspects of traffic systems, often overlooking the impact of external factors on congestion sources. Therefore, this study utilizes a geospatial dataset and mobile signaling data, firstly applying the Fuzzy C-Means (FCM) algorithm to identify congested roads of different levels and trace the localization of travelers’ origins on regional congested roads. Furthermore, it employs the LightGBM method to study the influence of the built environment of various congestion sources on network-level congestion. The findings are as follows: (1) There is a positive correlation between traffic congestion and geographical location, with congestion predominantly caused by a few specific plots and demonstrating a concentrated trend in city centers. (2) Residential population density is the most critical factor, accounting for over 12% of the congestion contribution, followed by road density and working population density. (3) Both residential and working population densities show a non-linear positive correlation with congestion contribution, while the mixture of land use displays a non-linear V-shaped influence. Additionally, when residential population density is between 8000 and 11,000, it notably exacerbates congestion contribution. Significantly, by emphasizing land use considerations in traffic system analysis, these findings illuminate the intricate linkages between urban planning and traffic congestion, advocating for a more comprehensive approach to urban development strategies.

Suggested Citation

  • Chenguang Li & Duo Wang & Hong Chen & Enze Liu, 2024. "Analysis of Urban Congestion Traceability: The Role of the Built Environment," Land, MDPI, vol. 13(2), pages 1-15, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:255-:d:1341230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duo Wang & Hong Chen & Chenguang Li & Enze Liu, 2023. "Exploring the Relationship between Land Use and Congestion Source in Xi’an: A Multisource Data Analysis Approach," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    2. Liu, Jixiang & Xiao, Longzhu, 2023. "Non-linear relationships between built environment and commuting duration of migrants and locals," Journal of Transport Geography, Elsevier, vol. 106(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yigang & Yao, Enjian & Liu, Shasha & Yang, Yang, 2024. "Spatiotemporal influence of built environment on intercity commuting trips considering nonlinear effects," Journal of Transport Geography, Elsevier, vol. 114(C).
    2. Jilong Li & Shiping Lin & Niuniu Kong & Yilin Ke & Jie Zeng & Jiacheng Chen, 2024. "Nonlinear and Synergistic Effects of Built Environment Indicators on Street Vitality: A Case Study of Humid and Hot Urban Cities," Sustainability, MDPI, vol. 16(5), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:255-:d:1341230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.