IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1915-d1521213.html
   My bibliography  Save this article

Evaluating Wheat Cultivation Potential in Ethiopia Under the Current and Future Climate Change Scenarios

Author

Listed:
  • Sintayehu Alemayehu

    (Department of Earth and Climate Sciences, University of Nairobi, Nairobi P.O Box 30197-00100, Kenya
    The International Center for Tropical Agriculture, Addis Ababa P.O. Box 5689, Ethiopia
    International Center for Tropical Agriculture (CIAT), Nairobi P.O. Box 823-00621, Kenya)

  • Daniel Olago

    (Department of Earth and Climate Sciences, University of Nairobi, Nairobi P.O Box 30197-00100, Kenya)

  • Alfred Opere

    (Department of Earth and Climate Sciences, University of Nairobi, Nairobi P.O Box 30197-00100, Kenya)

  • Tadesse Terefe Zeleke

    (The International Center for Tropical Agriculture, Addis Ababa P.O. Box 5689, Ethiopia
    Institute of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis Ababa P.O Box 1176, Ethiopia)

  • Sintayehu W. Dejene

    (The International Center for Tropical Agriculture, Addis Ababa P.O. Box 5689, Ethiopia
    Institute of Geophysics, Space Science and Astronomy, Addis Ababa University, Addis Ababa P.O Box 1176, Ethiopia)

Abstract

Land suitability analyses are crucial for identifying sustainable areas for agricultural crops and developing appropriate land use strategies. Thus, the present study aims to analyze the current and future land suitability for wheat ( Triticum aestivum L.) cultivation in Ethiopia. Twelve variables including soil properties, climate variables, and topographic characteristics were used in the evaluation of land suitability. Statistical methods such as Rotated Empirical Orthogonal Functions (REOF), Coefficient of Variation (CV), correlation, and parametric and non-parametric trend analyses were used to analyze the spatiotemporal variability in current and future climate data and identified significant patterns of variability. For future projections of land suitability and climate, this study employed climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) framework, downscaled using regional climate model version 4.7 (RegCM4.7) under two different Shared Socioeconomic Pathway (SSP) climate scenarios: SSP1 (a lower emission scenario) and SSP5 (a higher emission scenario). Under the current condition, during March, April, and May (MAM), 53.4% of the country was suitable for wheat cultivation while 44.4% was not suitable. In 2050, non-suitable areas for wheat cultivation are expected to increase by 1% and 6.9% during MAM under SSP1 and SSP5 climate scenarios, respectively. Our findings highlight that areas currently suitable for wheat may face challenges in the future due to altered temperature and precipitation patterns, potentially leading to shifts in suitable areas or reduced productivity. This study also found that the suitability of land for wheat cultivation was determined by rainfall amount, temperature, soil type, soil pH, soil organic carbon content, soil nitrogen content, and elevation. This research underscores the critical importance of integrating spatiotemporal climate variability with future projections to comprehensively assess wheat suitability. By elucidating the implications of climate change on wheat cultivation, this study lays the groundwork for developing effective adaptation strategies and actionable recommendations to enhance management practices. The findings support the county’s commitment to refining agricultural land use strategies, increasing wheat production through suitability predictions, and advancing self-sufficiency in wheat production. Additionally, these insights can empower Ethiopia’s agricultural extension services to guide farmers in cultivating wheat in areas identified as highly and moderately suitable, thereby bolstering production in a changing climate.

Suggested Citation

  • Sintayehu Alemayehu & Daniel Olago & Alfred Opere & Tadesse Terefe Zeleke & Sintayehu W. Dejene, 2024. "Evaluating Wheat Cultivation Potential in Ethiopia Under the Current and Future Climate Change Scenarios," Land, MDPI, vol. 13(11), pages 1-22, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1915-:d:1521213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belay Kassie & Senthold Asseng & Reimund Rotter & Huib Hengsdijk & Alex Ruane & Martin Ittersum, 2015. "Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models," Climatic Change, Springer, vol. 129(1), pages 145-158, March.
    2. Daniel Ayalew Mekonnen & Nicolas Gerber, 2017. "Aspirations and food security in rural Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 371-385, April.
    3. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    4. Antonio Alberto Rodríguez Sousa & Jesús M. Barandica & Pedro A. Aguilera & Alejandro J. Rescia, 2020. "Examining Potential Environmental Consequences of Climate Change and Other Driving Forces on the Sustainability of Spanish Olive Groves under a Socio-Ecological Approach," Agriculture, MDPI, vol. 10(11), pages 1-22, October.
    5. Gebreselassie, Samuel & Haile, Mekbib G. & Kalkuhl, Matthias, 2017. "The Wheat Sector in Ethiopia: Current Status and Key Challenges for Future Value Chain Development," Working Papers 261290, University of Bonn, Center for Development Research (ZEF).
    6. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
    2. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    3. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    4. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    5. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    6. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    7. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    8. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    9. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    10. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    11. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    12. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    13. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    14. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    15. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    16. Ionela Munteanu & Adriana Grigorescu & Elena Condrea & Elena Pelinescu, 2020. "Convergent Insights for Sustainable Development and Ethical Cohesion: An Empirical Study on Corporate Governance in Romanian Public Entities," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    17. Daniel Boss & Annick Hoffmann & Benjamin Rappaz & Christian Depeursinge & Pierre J Magistretti & Dimitri Van de Ville & Pierre Marquet, 2012. "Spatially-Resolved Eigenmode Decomposition of Red Blood Cells Membrane Fluctuations Questions the Role of ATP in Flickering," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    18. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.
    19. Adamou, Pr. Rabani & Ibrahim, Boubacar & Bonkaney, Abdou Latif & Seyni, Abdoul Aziz & Idrissa, Mamoudou, 2021. "Niger - Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security," Working Papers 308806, University of Bonn, Center for Development Research (ZEF).
    20. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1915-:d:1521213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.