IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1868-d1517155.html
   My bibliography  Save this article

Application of the Analytic Network Process for Sub-Watershed Prioritization in the Huehuetan River Basin, Chiapas, Mexico

Author

Listed:
  • Adolfo López-Pérez

    (Posgrado de Hidrociencias, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Mexico)

  • Gerardo Colín-García

    (Centro de Investigación Regional Pacifico Sur, Campo Experimental Centro de Chiapas, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ocozocoautla de Espinosa 29140, Mexico)

  • Héctor Moya

    (Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile)

  • Martín Alejandro Bolaños-González

    (Posgrado de Hidrociencias, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Mexico)

  • Demetrio Salvador Fernández-Reynoso

    (Posgrado de Hidrociencias, Colegio de Postgraduados, Campus Montecillo, Texcoco 56264, Mexico)

  • Angel Saul Cruz-Ramírez

    (Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad de México 04010, Mexico)

Abstract

Sub-watershed prioritization is essential for developing watershed management plans that maximize impact with minimal resources. This study used a multicriteria decision-making approach to rank sub-watersheds by degradation status in the Huehuetan River Basin, Chiapas, Mexico. The eight sub-watersheds in the basin were classified using the Analytic Network Process (ANP) model, evaluating morphometry, hydrology, hillslope stability, soil water saturation, land-use change, and socioeconomic factors. The results identified hydrology and land-use change as the most influential criteria, with weights of 20.62% and 19.82%, respectively, driven mainly by surface runoff and deforestation. Swtr 08 and Swtr 07 were identified as the highest-priority sub-watersheds, covering 24.31% of the basin area, with 55.31% of Swtr 08 classified as unstable and showing a combined high-vegetation loss of 16.46 km 2 . The entire watershed showed an annual vegetation loss rate of 146 ha year −1 . Increasing the weighting by 50% resulted in greater variability in priority rankings, with runoff and low vegetation showing maximum global ranges of −44.33% and 30.25%, respectively, instability decreasing by 33.94%, and peak flow increasing by 18.20%. These findings emphasize the need for focused interventions in the vulnerable subwatersheds of the upper basin to manage runoff, curb deforestation, and reduce soil instability.

Suggested Citation

  • Adolfo López-Pérez & Gerardo Colín-García & Héctor Moya & Martín Alejandro Bolaños-González & Demetrio Salvador Fernández-Reynoso & Angel Saul Cruz-Ramírez, 2024. "Application of the Analytic Network Process for Sub-Watershed Prioritization in the Huehuetan River Basin, Chiapas, Mexico," Land, MDPI, vol. 13(11), pages 1-24, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1868-:d:1517155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarita Gajbhiye Meshram & Ehsan Alvandi & Chandrashekhar Meshram & Ercan Kahya & Ayad M. Fadhil Al-Quraishi, 2020. "Application of SAW and TOPSIS in Prioritizing Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 715-732, January.
    2. Gwo-Hshiung Tzeng & Chi-Yo Huang, 2012. "Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems," Annals of Operations Research, Springer, vol. 197(1), pages 159-190, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi-Yo Huang & Min-Jen Yang & Jeen-Fong Li & Hueiling Chen, 2021. "A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    2. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    3. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    4. Kefan Xie & Zimei Liu, 2019. "Factors Influencing Escalator-Related Incidents in China: A Systematic Analysis Using ISM-DEMATEL Method," IJERPH, MDPI, vol. 16(14), pages 1-15, July.
    5. Sarita Gajbhiye Meshram & Vijay P. Singh & Ercan Kahya & Ehsan Alvandi & Chandrashekhar Meshram & Shailesh Kumar Sharma, 2020. "The Feasibility of Multi-Criteria Decision Making Approach for Prioritization of Sensitive Area at Risk of Water Erosion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4665-4685, December.
    6. Gul, Muhammet & Yucesan, Melih, 2022. "Performance evaluation of Turkish Universities by an integrated Bayesian BWM-TOPSIS model," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    7. Chi-Yo Huang & Pei-Han Chung & Joseph Z. Shyu & Yao-Hua Ho & Chao-Hsin Wu & Ming-Che Lee & Ming-Jenn Wu, 2018. "Evaluation and Selection of Materials for Particulate Matter MEMS Sensors by Using Hybrid MCDM Methods," Sustainability, MDPI, vol. 10(10), pages 1-35, September.
    8. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    9. Francesco Ciardiello & Andrea Genovese, 2023. "A comparison between TOPSIS and SAW methods," Annals of Operations Research, Springer, vol. 325(2), pages 967-994, June.
    10. Patanjal Kumar & Sachin Kumar Mangla & Yigit Kazancoglu & Ali Emrouznejad, 2023. "A decision framework for incorporating the coordination and behavioural issues in sustainable supply chains in digital economy," Annals of Operations Research, Springer, vol. 326(2), pages 721-749, July.
    11. Schulze-González, Erik & Pastor-Ferrando, Juan-Pascual & Aragonés-Beltrán, Pablo, 2023. "Clustering and reference value for assessing influence in analytic network process without pairwise comparison matrices: Study of 17 real cases," Operations Research Perspectives, Elsevier, vol. 10(C).
    12. Lee, Kuen-Chang & Tsai, Wen-Hsien & Yang, Chih-Hao & Lin, Ya-Zhi, 2018. "An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 76-85.
    13. Jamal Ouenniche & Kais Bouslah & Blanca Perez-Gladish & Bing Xu, 2021. "A new VIKOR-based in-sample-out-of-sample classifier with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 296(1), pages 495-512, January.
    14. Andrej Bregar, 2019. "Application of a hybrid Delphi and aggregation–disaggregation procedure for group decision-making," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 3-32, May.
    15. Ankur Chauhan & Harpreet Kaur & Sachin Yadav & Suresh Kumar Jakhar, 2020. "A hybrid model for investigating and selecting a sustainable supply chain for agri-produce in India," Annals of Operations Research, Springer, vol. 290(1), pages 621-642, July.
    16. Jagannath Roy & Dragan Pamučar & Samarjit Kar, 2020. "Evaluation and selection of third party logistics provider under sustainability perspectives: an interval valued fuzzy-rough approach," Annals of Operations Research, Springer, vol. 293(2), pages 669-714, October.
    17. Hung, Chih-Young & Lee, Wen-Yi, 2016. "A proactive technology selection model for new technology: The case of 3D IC TSV," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 191-202.
    18. Arthur Jin Lin & Hai-Yen Chang, 2019. "Business Sustainability Performance Evaluation for Taiwanese Banks—A Hybrid Multiple-Criteria Decision-Making Approach," Sustainability, MDPI, vol. 11(8), pages 1-26, April.
    19. Hanif Malekpoor & Nishikant Mishra & Sameer Kumar, 2022. "A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment," Annals of Operations Research, Springer, vol. 312(2), pages 1403-1425, May.
    20. Arthur J. Lin & Hai-Yen Chang & Sun-Weng Huang & Gwo-Hshiung Tzeng, 2021. "Criteria affecting Taiwan wealth management banks in serving high-net-worth individuals during COVID-19: a DEMATEL approach," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 26(4), pages 274-294, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1868-:d:1517155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.