IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1728-d1504052.html
   My bibliography  Save this article

Spatiotemporal Pattern Analysis and Prediction of Carbon Storage Based on Land Use and Cover Change: A Case Study of Jiangsu Coastal Cities in China

Author

Listed:
  • Ge Shi

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China
    Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210000, China
    School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Yutong Wang

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China
    School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Jingran Zhang

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China)

  • Jinghai Xu

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China
    School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Yu Chen

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China
    School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Wei Chen

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China)

  • Jiahang Liu

    (Institute for Emergency Governance and Policy, Nanjing Tech University, Nanjing 211816, China
    School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

Abstract

Accurate estimation of terrestrial ecosystem carbon storage and the scientific formulation of ecological conservation and land use policies are essential for promoting regional low-carbon sustainable development and achieving the goal of “carbon neutrality.” In this study, the FLUS–InVEST model was used to evaluate the carbon stocks of the Jiangsu coastal zone in China from 1995 to 2020 and scientifically forecast the changes in carbon stocks in 2030 under three scenarios: natural exploitation, ecological protection, and economic development. The results are as follows: (1) From 1995 to 2020, carbon storage in the coastal zone initially remained stable before declining, a trend closely linked to the accelerated urbanization and economic growth of Jiangsu Province. (2) By 2030, carbon storage under the three scenarios exhibits a pattern of “S1 decrease–S2 increase–S3 decrease,” with a more significant increase in construction land under the natural development and economic development scenarios compared to the ecological protection scenario. (3) The sensitivity of carbon storage to land use changes varies across scenarios. In the natural development scenario, carbon storage is most affected by forest reduction and construction land expansion. In the ecological protection scenario, it is more responsive to increases in non-construction land. In the economic development scenario, the expansion of construction land leads to the most significant decrease in carbon storage. Therefore, when formulating future territorial spatial planning policies and urban development strategies, it is essential to consider ecological protection and economic development scenarios comprehensively, taking into account carbon sequestration capabilities. This approach will ensure effective conservation and restoration of damaged ecosystems while safeguarding the robust development of urban economies and societies.

Suggested Citation

  • Ge Shi & Yutong Wang & Jingran Zhang & Jinghai Xu & Yu Chen & Wei Chen & Jiahang Liu, 2024. "Spatiotemporal Pattern Analysis and Prediction of Carbon Storage Based on Land Use and Cover Change: A Case Study of Jiangsu Coastal Cities in China," Land, MDPI, vol. 13(11), pages 1-22, October.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1728-:d:1504052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanru Pu & Yuyi Wang & Peng Wang, 2022. "Driving effects of urbanization on city-level carbon dioxide emissions: from multiple perspectives of urbanization," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 26(1), pages 108-128, January.
    2. Xiaomin Guo & Chuanglin Fang, 2021. "Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province," Land, MDPI, vol. 10(12), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanxiao Jiang & Zhou Huang, 2024. "Impact of urban vitality on carbon emission—an analysis of 222 Chinese cities based on the spatial Durbin model," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    2. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    3. Kui Liu & Jian Wang & Xiang Kang & Jingming Liu & Zheyi Xia & Kai Du & Xuexin Zhu, 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China," Land, MDPI, vol. 11(2), pages 1-20, February.
    4. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    5. Tianlin Zhai & Linke Wu & Yuanmeng Chen & Mian Faisal Nazir & Mingyuan Chang & Yuanbo Ma & Enxiang Cai & Guanyu Ding & Chenchen Zhao & Ling Li & Longyang Huang, 2022. "Ecological Compensation in the Context of Carbon Neutrality: A Case Involving Service Production-Transmission and Distribution-Service Consumption," Land, MDPI, vol. 11(12), pages 1-18, December.
    6. He Bai & Yuanyuan Chen & Shaohan Wang & Rui Chu & Jiyuan Fang & Huina Zhang & Shuhan Xing & Lei Wang & Dawei Xu, 2024. "Coupling Coordination Relationship and Spatiotemporal Heterogeneity between Urbanization and Ecosystem Services in the Songhua River Basin," Land, MDPI, vol. 13(7), pages 1-30, June.
    7. Kai Guo & Zhenhao He & Xiaojin Liang & Xuanwei Chen & Renbo Luo & Tianqi Qiu & Kexin Zhang, 2023. "Examining Relationships between Regional Ecological Risk and Land Use Using the Granger Causality Test Applied to a Mining City, Daye, China," Land, MDPI, vol. 12(11), pages 1-17, November.
    8. Tianhui Fan & Andrew Chapman, 2022. "Policy Driven Compact Cities: Toward Clarifying the Effect of Compact Cities on Carbon Emissions," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    9. Zhuoqi Teng & Yugang He & Zhi Qiao, 2023. "Exploring the Synergistic Effects of Digitalization and Economic Uncertainty on Environmental Sustainability: An Investigation from China," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    10. Lan Song & Zhiji Huang, 2022. "Exploring the Effects of Industrial Land Transfer on Urban Air Quality Using a Geographically and Temporally Weighted Regression Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    11. Zhang, Yixiang & Fu, Bowen, 2023. "Social trust contributes to the reduction of urban carbon dioxide emissions," Energy, Elsevier, vol. 279(C).
    12. Ke Luo & Shuo Chen & Shixi Cui & Yuantao Liao & Yu He & Chunshan Zhou & Shaojian Wang, 2023. "Examining the Overall and Heterogeneous Impacts of Urban Spatial Structure on Carbon Emissions: A Case Study of Guangdong Province, China," Land, MDPI, vol. 12(9), pages 1-19, September.
    13. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    14. Peijia Wang & Ping Wang, 2022. "Spatio-Temporal Evolution of Land Use Transition in the Background of Carbon Emission Trading Scheme Implementation: An Economic–Environmental Perspective," Land, MDPI, vol. 11(3), pages 1-21, March.
    15. Yuanyuan Lou & Dan Yang & Pengyan Zhang & Ying Zhang & Meiling Song & Yicheng Huang & Wenlong Jing, 2022. "Multi-Scenario Simulation of Land Use Changes with Ecosystem Service Value in the Yellow River Basin," Land, MDPI, vol. 11(7), pages 1-17, June.
    16. Sadiq, Muhammad & Chavali, Kavita & Kumar, V.V. Ajith & Wang, Kuan-Ting & Nguyen, Phong Thanh & Ngo, Thanh Quang, 2023. "Unveiling the relationship between environmental quality, non-renewable energy usage and natural resource rent: Fresh insights from ten asian economies," Resources Policy, Elsevier, vol. 85(PA).
    17. Qingyun Xu & Kongqing Li, 2024. "Land Use Carbon Emission Estimation and Simulation of Carbon-Neutral Scenarios Based on System Dynamics in Coastal City: A Case Study of Nantong, China," Land, MDPI, vol. 13(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1728-:d:1504052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.