IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1551-d1485137.html
   My bibliography  Save this article

Mapping an Indicator Species of Sea-Level Rise along the Forest–Marsh Ecotone

Author

Listed:
  • Bryanna Norlin

    (Department of Geography, Kent State University, Kent, OH 44242, USA)

  • Andrew E. Scholl

    (Department of Geography, Kent State University, Kent, OH 44242, USA)

  • Andrea L. Case

    (Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA)

  • Timothy J. Assal

    (Department of Geography, Kent State University, Kent, OH 44242, USA
    Bureau of Land Management, National Operations Center, Denver, CO 80225, USA)

Abstract

Atlantic White Cedar ( Chamaecyparis thyoides ) (AWC) anchors a globally threatened ecosystem that is being impacted by climate change, as these trees are vulnerable to hurricane events, sea-level rises, and increasing salinity at the forest–marsh ecotone. In this study, we determined the current amount and distribution of AWC in an area that is experiencing sea-level rises that are higher than the global average rate. We used a combination of a field investigation and aerial photo interpretation to identify known locations of AWC, then integrated Sentinel-1 and 2A satellite data with abiotic variables into a species distribution model. We developed a spectral signature of AWC to aid in our understanding of phenology differences from nearby species groups. The selected model had an out-of-bag error of 7.2%, and 8 of the 11 variables retained in the final model were derived from remotely sensed data, highlighting the importance of including temporal data to exploit divergent phenology. Model predictions were strong in live AWC stands and, accurately, did not predict live AWC in stands that experienced high levels of mortality after Hurricane Sandy. The model presented in this study provides high utility for AWC management and tracking mortality dynamics within stands after disturbances such as hurricanes.

Suggested Citation

  • Bryanna Norlin & Andrew E. Scholl & Andrea L. Case & Timothy J. Assal, 2024. "Mapping an Indicator Species of Sea-Level Rise along the Forest–Marsh Ecotone," Land, MDPI, vol. 13(10), pages 1-20, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1551-:d:1485137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulo De Marco Júnior & Caroline Corrêa Nóbrega, 2018. "Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    2. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    3. Pimenta, Mayra & Andrade, André Felipe Alves de & Fernandes, Fernando Hiago Souza & Amboni, Mayra Pereira de Melo & Almeida, Renata Silva & Soares, Ana Hermínia Simões de Bello & Falcon, Guth Berger &, 2022. "One size does not fit all: Priority areas for real world problems," Ecological Modelling, Elsevier, vol. 470(C).
    4. Abdulwahab, Umarfarooq A. & Hammill, Edd & Hawkins, Charles P., 2022. "Choice of climate data affects the performance and interpretation of species distribution models," Ecological Modelling, Elsevier, vol. 471(C).
    5. Dany A. Cotrina Sánchez & Elgar Barboza Castillo & Nilton B. Rojas Briceño & Manuel Oliva & Cristóbal Torres Guzman & Carlos A. Amasifuen Guerra & Subhajit Bandopadhyay, 2020. "Distribution Models of Timber Species for Forest Conservation and Restoration in the Andean-Amazonian Landscape, North of Peru," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    6. Mendes, Poliana & Velazco, Santiago José Elías & Andrade, André Felipe Alves de & De Marco, Paulo, 2020. "Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy," Ecological Modelling, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1551-:d:1485137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.