IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1567-d1212492.html
   My bibliography  Save this article

Quantifying Damages to Soil Health and Emissions from Land Development in the State of Illinois (USA)

Author

Listed:
  • Elena A. Mikhailova

    (Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA)

  • Hamdi A. Zurqani

    (Arkansas Forest Resources Center, University of Arkansas Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA
    College of Forestry, Agriculture, and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA)

  • Lili Lin

    (Department of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China)

  • Zhenbang Hao

    (University Key Lab for Geomatics Technology and Optimized Resources Utilization in Fujian Province, No. 15 Shangxiadian Road, Fuzhou 350002, China)

  • Christopher J. Post

    (Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA)

  • Mark A. Schlautman

    (Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA)

  • Gregory C. Post

    (Geography Department, Portland State University, Portland, OR 97202, USA)

  • George B. Shepherd

    (School of Law, Emory University, Atlanta, GA 30322, USA)

  • Renee M. Dixon

    (Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA)

Abstract

The concept of soil health is increasingly being used as an indicator for sustainable soil management and even includes legislative actions. Current applications of soil health often lack geospatial and monetary analyses of damages (e.g., land development), which can degrade soil health through loss of carbon (C) and productive soils. This study aims to evaluate the damages to soil health (e.g., soil C, the primary soil health indicator) attributed to land developments within the state of Illinois (IL) in the United States of America (USA). All land developments in IL can be associated with damages to soil health, with 13,361.0 km 2 developed, resulting in midpoint losses of 2.5 × 10 11 of total soil carbon (TSC) and a midpoint social cost of carbon dioxide emissions (SC-CO 2 ) of $41.8B (where B = billion = 10 9 , USD). More recently developed land area (721.8 km 2 ) between 2001 and 2016 likely caused the midpoint loss of 1.6 × 10 10 kg of TSC and a corresponding midpoint of $2.7B in SC-CO 2 . New developments occurred adjacent to current urban areas near the capital cities of Springfield, Chicago, and St. Louis (the border city between the states of Missouri and IL). Results of this study reveal several types of damage to soil health from developments: soil C loss, associated “realized” soil C social costs (SC-CO 2 ), and loss of soil C sequestration potential from developments. The innovation of this study has several aspects. Geospatial analysis of land cover combined with corresponding soil types can identify changes in the soil health continuum at the landscape level. Because soil C is a primary soil health indicator, land conversions caused by developments reduce soil health and the availability of productive soils for agriculture, forestry, and C sequestration. Current IL soil health legislation can benefit from this landscape level data on soil C loss with GHG emissions and associated SC-CO 2 costs by providing insight into the soil health continuum and its dynamics. These techniques and data can also be used to expand IL’s GHG emissions reduction efforts from being solely focused on the energy sector to include soil-based emissions from developments. Current soil health legislation does not recognize that soil’s health is harmed by disturbance from land developments and that this disturbance results in GHG emissions. Soil health programs could be broadened to encourage less disturbance of soil types that release high levels of GHG and set binding targets based on losses in the soil health continuum.

Suggested Citation

  • Elena A. Mikhailova & Hamdi A. Zurqani & Lili Lin & Zhenbang Hao & Christopher J. Post & Mark A. Schlautman & Gregory C. Post & George B. Shepherd & Renee M. Dixon, 2023. "Quantifying Damages to Soil Health and Emissions from Land Development in the State of Illinois (USA)," Land, MDPI, vol. 12(8), pages 1-21, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1567-:d:1212492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Total Soil Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(4), pages 1-16, September.
    2. Elena A. Mikhailova & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2021. "Soil Diversity (Pedodiversity) and Ecosystem Services," Land, MDPI, vol. 10(3), pages 1-34, March.
    3. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    4. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    5. Garth R. Groshans & Elena A. Mikhailova & Christopher J. Post & Mark A. Schlautman & Lisha Zhang, 2019. "Determining the Value of Soil Inorganic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena A. Mikhailova & Hamdi A. Zurqani & Lili Lin & Zhenbang Hao & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2023. "Opportunities for Monitoring Soil and Land Development to Support United Nations (UN) Sustainable Development Goals (SDGs): A Case Study of the United States of America (USA)," Land, MDPI, vol. 12(10), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip C. Hutton & Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2022. "Net-Zero Target and Emissions from Land Conversions: A Case Study of Maryland’s Climate Solutions Now Act," Geographies, MDPI, vol. 3(1), pages 1-20, December.
    2. Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post & George B. Shepherd, 2022. "Conflicts of Interest and Emissions from Land Conversions: State of New Jersey as a Case Study," Geographies, MDPI, vol. 2(4), pages 1-22, November.
    3. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Total Soil Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(4), pages 1-16, September.
    4. Elena A. Mikhailova & Hamdi A. Zurqani & Lili Lin & Zhenbang Hao & Christopher J. Post & Mark A. Schlautman & George B. Shepherd, 2023. "Opportunities for Monitoring Soil and Land Development to Support United Nations (UN) Sustainable Development Goals (SDGs): A Case Study of the United States of America (USA)," Land, MDPI, vol. 12(10), pages 1-23, September.
    5. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    6. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    7. Jean‐Paul Chavas & Giorgia Rivieccio & Salvatore Di Falco & Giovanni De Luca & Fabian Capitanio, 2022. "Agricultural diversification, productivity, and food security across time and space," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 41-58, November.
    8. Park, Dojin, 2021. "The Valuation of Soil Health Improvements and Ecosystem Services among Crop Producers in the U.S," 2021 Annual Meeting, August 1-3, Austin, Texas 314032, Agricultural and Applied Economics Association.
    9. Van Asselt, Joanna & Grogan, Kelly A., 2020. "Do Fertilizer Subsidies Improve Soil Quality: Myopic vs. Dynamic Analysis of Smallholder Farmers in Ghana," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304546, Agricultural and Applied Economics Association.
    10. Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2022. "Contribution of Land Cover Conversions to Connecticut (USA) Carbon Footprint," Geographies, MDPI, vol. 2(2), pages 1-17, May.
    11. Elena A. Mikhailova & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post & Lili Lin & Zhenbang Hao, 2021. "Soil Carbon Regulating Ecosystem Services in the State of South Carolina, USA," Land, MDPI, vol. 10(3), pages 1-19, March.
    12. Schuurman, Daniel & Weersink, Alfons & Delaporte, Aaron, 2021. "Optimal Sequential Crop Choices for Soil Carbon Management: A Dynamic Programming Approach," 2021 Annual Meeting, August 1-3, Austin, Texas 314042, Agricultural and Applied Economics Association.
    13. Xiang Fan & Yanjun Guan & Zhongke Bai & Wei Zhou & Chuxin Zhu, 2022. "Optimization of Reclamation Measures in a Mining Area by Analysis of Variations in Soil Nutrient Grades under Different Types of Land Usage—A Case Study of Pingshuo Coal Mine, China," Land, MDPI, vol. 11(3), pages 1-19, February.
    14. Guillaume Jacek & Anne Rozan & Isabelle Combroux, 2022. "Are Mechanical and Biological Techniques Efficient in Restoring Soil and Associated Biodiversity in a Brownfield Site?," Land, MDPI, vol. 11(12), pages 1-20, November.
    15. Elena A. Mikhailova & Lili Lin & Zhenbang Hao & Hamdi A. Zurqani & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2022. "Massachusetts Roadmap to Net Zero: Accounting for Ownership of Soil Carbon Regulating Ecosystem Services and Land Conversions," Laws, MDPI, vol. 11(2), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1567-:d:1212492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.