IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1275-d1177341.html
   My bibliography  Save this article

Eco-Efficiency of the Urban Agglomerations: Spatiotemporal Characteristics and Determinations

Author

Listed:
  • Shuting Xue

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

  • Chao Wang

    (School of Labor Economics, Capital University of Economics and Business, Beijing 100070, China)

  • Shibin Zhang

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

  • Chuyao Weng

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

  • Yuxi Zhang

    (School of Land Science and Technology, China University of Geosciences, Beijing 100083, China)

Abstract

Attaining optimal eco-efficiency is of paramount importance in promoting the sustainable and harmonious development of the economy and environment within urban agglomerations. Firstly, this paper utilizes the Super-SBM model with undesirable output to measure the eco-efficiency ( EE ) of 64 cities in the Beijing–Tianjin–Hebei metropolitan region (BTHMR), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing Economic Zone (CCEZ) from 2006 to 2019. Secondly, this study puts forth a novel and comprehensive index system aimed at evaluating the urbanization efficiency and sheds light on the spatiotemporal changes in EE and urbanization efficiency. Finally, the STIRPAT model is used to examine the influencing factors of EE and to investigate the correlation between EE and urbanization efficiency. The study found that the overall EE of the four typical urban agglomerations is high, but the trend varies with a decrease of about 12.9% from 2006 to 2019. The mean EE is in the order of CCEZ > PRD > BTHMR > YRD, with mean values of 0.941, 0.909, 0.842, and 0.732, respectively. The level of science and technology and the urbanization efficiency have a significant positive impact on EE , while population, industrial structure, FDI , and greening level have an inhibitory effect on urban eco-efficiency. Based on the results, policy suggestions such as paying attention to regional heterogeneity and giving full play to the government’s macro-regulatory role in shaping the economic and industrial structure are proposed to serve as a guide for the coordinated development of urban agglomerations under the Dual Carbon Target.

Suggested Citation

  • Shuting Xue & Chao Wang & Shibin Zhang & Chuyao Weng & Yuxi Zhang, 2023. "Eco-Efficiency of the Urban Agglomerations: Spatiotemporal Characteristics and Determinations," Land, MDPI, vol. 12(7), pages 1-19, June.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1275-:d:1177341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danyu Liu & Ke Zhang, 2022. "Analysis of Spatial Differences and the Influencing Factors in Eco-Efficiency of Urban Agglomerations in China," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    2. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    3. Elena Ketteni & Constantina Kottaridi & Theofanis Mamuneas, 2015. "Information and communication technology and foreign direct investment: interactions and contributions to economic growth," Empirical Economics, Springer, vol. 48(4), pages 1525-1539, June.
    4. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    5. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    6. Brülhart, Marius & Mathys, Nicole A., 2008. "Sectoral agglomeration economies in a panel of European regions," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 348-362, July.
    7. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    8. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    10. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xiaohong & Xu, Haiyan & Lou, Wengao & Xu, Xun & Shi, Victor, 2023. "Examining energy eco-efficiency in China's logistics industry," International Journal of Production Economics, Elsevier, vol. 258(C).
    2. Li Yue & Dan Xue & Muhammad Umar Draz & Fayyaz Ahmad & Jiaojiao Li & Farrukh Shahzad & Shahid Ali, 2020. "The Double-Edged Sword of Urbanization and Its Nexus with Eco-Efficiency in China," IJERPH, MDPI, vol. 17(2), pages 1-20, January.
    3. Tifang Ye & Xiuli Xiang & Xiangyu Ge & Keling Yang, 2022. "Research on Green Finance and Green Development Based Eco-Efficiency and Spatial Econometric Analysis," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    4. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    5. Ling Wang & Zhongchang Chen & Dalai Ma & Pei Zhao, 2013. "Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis," Sustainability, MDPI, vol. 5(12), pages 1-14, December.
    6. Hangang Hu & Lisha Pan & Xin Jing & Guan Li & Yuefei Zhuo & Zhongguo Xu & Yang Chen & Xueqi Wang, 2022. "The Spatiotemporal Non-Stationary Effect of Industrial Agglomeration on Urban Land Use Efficiency: A Case Study of Yangtze River Delta, China," Land, MDPI, vol. 11(5), pages 1-27, May.
    7. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    8. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    9. Peirong Chen & Ruhe Xie & Mingxuan Lu, 2020. "“Resource Conservation” or “Environmental Friendliness”: How do Urban Clusters Affect Total-Factor Ecological Performance in China?," IJERPH, MDPI, vol. 17(12), pages 1-28, June.
    10. Xiaohu Li & Xigang Zhu & Jianshu Li & Chao Gu, 2021. "Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    11. Ying-yu Lu & Yue He & Bo Wang & Shuang-shuang Ye & Yidi Hua & Lei Ding, 2019. "Efficiency Evaluation of Atmospheric Pollutants Emission in Zhejiang Province China: A DEA-Malmquist Based Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    12. Lan Yao & Zhenning Yu & Mengya Wu & Jiachen Ning & Tiangui Lv, 2020. "The Spatiotemporal Evolution and Trend Prediction of Ecological Wellbeing Performance in China," Land, MDPI, vol. 10(1), pages 1-17, December.
    13. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    14. Tifang Ye & Hao Zheng & Xiangyu Ge & Keling Yang, 2021. "Pathway of Green Development of Yangtze River Economics Belt from the Perspective of Green Technological Innovation and Environmental Regulation," IJERPH, MDPI, vol. 18(19), pages 1-26, October.
    15. Wang, Xinbin & Wang, Zilong & Wang, Rong, 2023. "Does green economy contribute towards COP26 ambitions? Exploring the influence of natural resource endowment and technological innovation on the growth efficiency of China's regional green economy," Resources Policy, Elsevier, vol. 80(C).
    16. Yu Zhang & Wenliang Geng & Pengyan Zhang & Erling Li & Tianqi Rong & Ying Liu & Jingwen Shao & Hao Chang, 2020. "Dynamic Changes, Spatiotemporal Differences and Factors Influencing the Urban Eco-Efficiency in the Lower Reaches of the Yellow River," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    17. Liang-jun Long, 2021. "Eco-efficiency and effectiveness evaluation toward sustainable urban development in China: a super-efficiency SBM–DEA with undesirable outputs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14982-14997, October.
    18. Maohui Ren & Tao Zhou & Di Wang & Chenxi Wang, 2023. "Does Environmental Regulation Promote the Infrastructure Investment Efficiency? Analysis Based on the Spatial Effects," IJERPH, MDPI, vol. 20(4), pages 1-24, February.
    19. Defeng Zheng & Shuai Hao & Caizhi Sun & Leting Lyu, 2019. "Spatial Correlation and Convergence Analysis of Eco-Efficiency in China," Sustainability, MDPI, vol. 11(9), pages 1-16, April.
    20. Ning Xu & Desen Zhao & Wenjie Zhang & He Zhang & Wanxu Chen & Min Ji & Ming Liu, 2022. "Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(10), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1275-:d:1177341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.