IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2022i1p26-d1011483.html
   My bibliography  Save this article

Urban Industrial Carbon Efficiency Measurement and Influencing Factors Analysis in China

Author

Listed:
  • Weijia Cui

    (College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)

  • Xueqin Lin

    (College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)

  • Dai Wang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Ying Mi

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Based on the EBM-DEA (Explainable Boosting Machine-Data Envelopment Analysis) model, this paper constructs an evaluation model of urban industrial carbon efficiency (UICE), measures and analyzes the spatial evolution characteristics of China’s UICE from 2003 to 2016, and analyzes the influencing factors of UICE using the Tobit model. The research draws the following conclusions: (1) China’s UICE improved from 2003 to 2016, and the distribution showed a spatial pattern decreasing from the east, central, west, and northeast regions. (2) The UICE, by region, was at an initial low stable level in 2003 and was in the process of moving towards a highly-efficient stable state up until 2016. The differences between regions have been the main aspect which affects the overall variation in UICE in China. (3) There is a logistic curve relationship between the economic development level and UICE. (4) Nationally, the factors that are significantly and positively correlated with UICE are: industrial agglomeration, local fiscal decentralisation, level of economic development, technological progress, industrial enterprises’ average size, and industrial diversification. Factors that are significantly negatively correlated with UICE are the level of industrialization, the share of output value of state-owned enterprises in total output value, industrial openness, and environmental regulation. The factors influencing UICE differ depending on the stage of industrialization.

Suggested Citation

  • Weijia Cui & Xueqin Lin & Dai Wang & Ying Mi, 2022. "Urban Industrial Carbon Efficiency Measurement and Influencing Factors Analysis in China," Land, MDPI, vol. 12(1), pages 1-21, December.
  • Handle: RePEc:gam:jlands:v:12:y:2022:i:1:p:26-:d:1011483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xepapadeas, Anastasios, 2005. "Economic growth and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 23, pages 1219-1271, Elsevier.
    2. Dai, Shufen & Qian, Yawen & He, Weijun & Wang, Chen & Shi, Tianyu, 2022. "The spatial spillover effect of China's carbon emissions trading policy on industrial carbon intensity: Evidence from a spatial difference-in-difference method," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 139-149.
    3. Wang, Linhui & Wang, Hui & Cao, Zhanglu & He, Yongda & Dong, Zhiqing & Wang, Shixiang, 2022. "Can industrial intellectualization reduce carbon emissions? — Empirical evidence from the perspective of carbon total factor productivity in China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Zhaohan Wang & Zijie Zhao & Chengxin Wang, 2021. "Random forest analysis of factors affecting urban carbon emissions in cities within the Yangtze River Economic Belt," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    5. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    6. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    8. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    9. Agras, Jean & Chapman, Duane, 1999. "A dynamic approach to the Environmental Kuznets Curve hypothesis," Ecological Economics, Elsevier, vol. 28(2), pages 267-277, February.
    10. Hongbin Cai & Qiao Liu, 2009. "Competition and Corporate Tax Avoidance: Evidence from Chinese Industrial Firms," Economic Journal, Royal Economic Society, vol. 119(537), pages 764-795, April.
    11. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    12. Jingyi Wang & Kaisi Sun & Jiupai Ni & Deti Xie, 2021. "Evaluation and Factor Analysis of Industrial Carbon Emission Efficiency Based on “Green-Technology Efficiency”—The Case of Yangtze River Basin, China," Land, MDPI, vol. 10(12), pages 1-23, December.
    13. Zhanhang Zhou & Linjian Cao & Kuokuo Zhao & Dongliang Li & Ci Ding, 2021. "Spatio-Temporal Effects of Multi-Dimensional Urbanization on Carbon Emission Efficiency: Analysis Based on Panel Data of 283 Cities in China," IJERPH, MDPI, vol. 18(23), pages 1-20, December.
    14. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    15. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    16. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    17. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qikai Lu & Tiance Lv & Sirui Wang & Lifei Wei, 2023. "Spatiotemporal Variation and Development Stage of CO 2 Emissions of Urban Agglomerations in the Yangtze River Economic Belt, China," Land, MDPI, vol. 12(9), pages 1-20, August.
    2. Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingneng Xia & Ruoxi Yu & Sheng Zhang, 2023. "Evaluating the Impact of Smart City Policy on Carbon Emission Efficiency," Land, MDPI, vol. 12(7), pages 1-18, June.
    2. Vladimír Baláž & Eduard Nežinský & Tomáš Jeck & Richard Filčák, 2020. "Energy and Emission Efficiency of the Slovak Regions," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    3. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    4. Li-Ming Xue & Zhi-Xue Zheng & Shuo Meng & Mingjun Li & Huaqing Li & Ji-Ming Chen, 2022. "Carbon emission efficiency and spatio-temporal dynamic evolution of the cities in Beijing-Tianjin-Hebei Region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7640-7664, June.
    5. Liangen Zeng & Haiyan Lu & Yenping Liu & Yang Zhou & Haoyu Hu, 2019. "Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    7. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    8. Ling-Yun He & Liang Wang, 2019. "Import Liberalization of Intermediates and Environment: Empirical Evidence from Chinese Manufacturing," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    9. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    10. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    11. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    12. Haixiang Xu & Rui Zhang, 2024. "Dynamic Analysis of Urban Land Use Efficiency in the Western Taiwan Strait Economic Zone," Land, MDPI, vol. 13(8), pages 1-26, August.
    13. Dongchuan Wang & Wengang Chen & Wei Wei & Broxton W. Bird & Lihui Zhang & Mengqin Sang & Qianqian Wang, 2016. "Research on the Relationship between Urban Development Intensity and Eco-Environmental Stresses in Bohai Rim Coastal Area, China," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    14. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    15. Xiangqian Wang & Shudong Wang & Yongqiu Xia, 2022. "Evaluation and Dynamic Evolution of the Total Factor Environmental Efficiency in China’s Mining Industry," Energies, MDPI, vol. 15(3), pages 1-19, February.
    16. Juhyun Oh, 2023. "The Effects of Local Government Expenditures on Carbon Dioxide Emissions: Evidence from Republic of Korea," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    17. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    18. Devleena Chakravarty & Sabuj Kumar Mandal, 2019. "Environmental Kuznets curve for local and global pollutants: application of GMM and random coefficient panel data models," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 21(2), pages 212-233, December.
    19. Arto, Iñaki & Ansuategui Cobo, José Alberto, 2003. "La evolución de la intensidad energética de la industria vasca entre 1982-2001: Un análisis de descomposición," IKERLANAK 2003-07, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    20. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2022:i:1:p:26-:d:1011483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.