IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1424-d900608.html
   My bibliography  Save this article

Production–Living–Ecological Risk Assessment and Corresponding Strategies in China’s Provinces under Climate Change Scenario

Author

Listed:
  • Wenjuan Hou

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Shaohong Wu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Linsheng Yang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yunhe Yin

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jiangbo Gao

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Haoyu Deng

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Maowei Wu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xiaojie Li

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Lulu Liu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

In the context of the increasing frequency of natural disasters caused by climate change in recent years, rational territorial spatial planning must pay attention to production–living–ecological (PLE) risks under climate change scenarios. In this study, a method synthesizing the Box–Cox transformation and area weighted averaging is established for characterizing the PLE risks in China’s provinces, which are divided into three zones to cope with PLE risks. Further, targeted strategies from the perspective of the disaster-induced factors and disaster-affected objects are explored for the regions within the different zones. The results show that the regions with a high production risk are mainly distributed in Guangdong, Henan, and Shandong, with an index between 0.80 and 1.00; the regions with a high living risk are concentrated in Jiangsu, Anhui, Guangdong, and Hainan, with an index exceeding 0.72; and the regions with a high ecological risk are concentrated in Guangxi, Ningxia, and Yunnan, with an index exceeding 0.50. The overall PLE risk is high along the southeastern coast, intermediate in central and western China, and low on the Tibetan Plateau. From the A to C zones, the number of risk types and intensity of risks requiring attention gradually decrease. For the category A zone, recommended measures include the construction of disaster risk monitoring and early warning systems for coastal cities and major grain-producing regions, the development of urban ecological protection zones, and the adjustment of economic and energy structures, etc. Production and living risks are central to the category B zone, while ecological and production risks are central to the category C zone. This study can provide theoretical support for China’s scientific development of land planning and the realization of a beautiful China.

Suggested Citation

  • Wenjuan Hou & Shaohong Wu & Linsheng Yang & Yunhe Yin & Jiangbo Gao & Haoyu Deng & Maowei Wu & Xiaojie Li & Lulu Liu, 2022. "Production–Living–Ecological Risk Assessment and Corresponding Strategies in China’s Provinces under Climate Change Scenario," Land, MDPI, vol. 11(9), pages 1-15, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1424-:d:900608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    2. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    3. Jonatan A. Lassa & Allen Yu-Hung Lai & Tian Goh, 2016. "Climate extremes: an observation and projection of its impacts on food production in ASEAN," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 19-33, November.
    4. Venelin Tsankov Makakov & Rositsa Todorova Velichkova & Iskra Sashova Simova & Detelin Ganchev Marko, 2017. "Floods Risk Assessment In Bulgaria," CBU International Conference Proceedings, ISE Research Institute, vol. 5(0), pages 1253-1258, September.
    5. Jian Fang & Feng Kong & Jiayi Fang & Lin Zhao, 2018. "Observed changes in hydrological extremes and flood disaster in Yangtze River Basin: spatial–temporal variability and climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 89-107, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    2. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    3. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    4. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    5. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    6. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    7. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    10. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    11. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.
    12. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    13. Dang Luo & Wenxin Mao & Huifang Sun, 2017. "Risk assessment and analysis of ice disaster in Ning–Meng reach of Yellow River based on a two-phased intelligent model under grey information environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 591-610, August.
    14. Dilshad Ahmad & Mohammad Afzal & Abdur Rauf, 2021. "Farmers’ adaptation decisions to landslides and flash floods in the mountainous region of Khyber Pakhtunkhwa of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8573-8600, June.
    15. José Barredo, 2007. "Major flood disasters in Europe: 1950–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 125-148, July.
    16. Guozhen Wei & Wei Ding & Guohua Liang & Bin He & Jian Wu & Rui Zhang & Huicheng Zhou, 2022. "A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3591-3607, August.
    17. Helen Boon, 2014. "Disaster resilience in a flood-impacted rural Australian town," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 683-701, March.
    18. Yiting Shao & Xiaohui Zhai & Xingmin Mu & Sen Zheng & Dandan Shen & Jinglin Qian, 2024. "An Attribution Analysis of Runoff Alterations in the Danjiang River Watershed for Sustainable Water Resource Management by Different Methods," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    19. Guleid Artan & Hussein Gadain & Jodie Smith & Kwabena Asante & Christina Bandaragoda & James Verdin, 2007. "Adequacy of satellite derived rainfall data for stream flow modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 167-185, November.
    20. Insa Thiele-Eich & Katrin Burkart & Clemens Simmer, 2015. "Trends in Water Level and Flooding in Dhaka, Bangladesh and Their Impact on Mortality," IJERPH, MDPI, vol. 12(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1424-:d:900608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.