A Quantitative Analysis Method of Regional Rainfall-Induced Landslide Deformation Response Variation Based on a Time-Domain Correlation Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lingjing Li & Xin Yao & Jiaming Yao & Zhenkai Zhou & Xin Feng & Xinghong Liu, 2019. "Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 719-733, September.
- Enrico Miccadei & Cristiano Carabella & Giorgio Paglia, 2022. "Landslide Hazard and Environment Risk Assessment," Land, MDPI, vol. 11(3), pages 1-5, March.
- Rattana Salee & Avirut Chinkulkijniwat & Somjai Yubonchit & Suksun Horpibulsuk & Chadanit Wangfaoklang & Sirirat Soisompong, 2022. "New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 125-141, August.
- Kai Wang & Shaojie Zhang, 2021. "Rainfall-induced landslides assessment in the Fengjie County, Three-Gorge reservoir area, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 451-478, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhengyang Su & Guizhi Wang & Yakun Wang & Xiang Luo & Hao Zhang, 2022. "Numerical simulation of dynamic catastrophe of slope instability in three Gorges reservoir area based on FEM and SPH method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 709-724, March.
- Junbiao Yan & Zongxing Zou & Rui Mu & Xinli Hu & Jincheng Zhang & Wen Zhang & Aijun Su & Jinge Wang & Tao Luo, 2022. "Evaluating the stability of Outang landslide in the Three Gorges Reservoir area considering the mechanical behavior with large deformation of the slip zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2523-2547, July.
- Yifei Zhu & Xin Yao & Leihua Yao & Chuangchuang Yao, 2022. "Detection and characterization of active landslides with multisource SAR data and remote sensing in western Guizhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 973-994, March.
- Tanmoy Das & Vansittee Dilli Rao & Deepankar Choudhury, 2022. "Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 751-785, October.
- Weidong Zhao & Yunyun Cheng & Jie Hou & Yihua Chen & Bin Ji & Lei Ma, 2023. "A regional early warning model of geological hazards based on big data of real-time rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3465-3480, April.
More about this item
Keywords
rainfall-reduced landslide; regional rainfall; landslide deformation; time-domain correlation measurement; impulse response analysis; China;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:703-:d:810821. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.