IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p431-d772407.html
   My bibliography  Save this article

Improving Outdoor Thermal Comfort in a Steppe Climate: Effect of Water and Trees in an Urban Park

Author

Listed:
  • Saeid Teshnehdel

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

  • Elisa Gatto

    (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy)

  • Dongying Li

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

  • Robert D. Brown

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

Abstract

Excess heat in urban environments is an increasing threat to human health and well-being. Furthermore, the increasingly important phenomenon of the Urban Heat Island (UHI) is exacerbating problems of livability in urban centers. Hence, there should be an increasing effort to assess the impact of heat mitigation strategies (HMSs) on outdoor thermal comfort in cities. This research has investigated how urban areas in steppe climate zones can be more thermally comfortable due to the effects of water bodies and trees, and how this might help to mitigate heat waves. Numerical simulations using the ENVI-met microclimate model have been performed for an urban park in Tabriz, Iran. In-situ measurements of air temperature (Ta) and mean radiant temperature (MRT) have been carried out in the study site and the collected data was used to validate the model (RMSE value 0.98 °C for Ta and 5.85 °C for MRT). Results show that water body evaporation without trees may decrease the air temperature, but on the other hand also increases the humidity, which reduces the positive impact on thermal comfort. However, the combination of water body with trees represents a better performance in the regulation of urban microclimate and thermal comfort.

Suggested Citation

  • Saeid Teshnehdel & Elisa Gatto & Dongying Li & Robert D. Brown, 2022. "Improving Outdoor Thermal Comfort in a Steppe Climate: Effect of Water and Trees in an Urban Park," Land, MDPI, vol. 11(3), pages 1-14, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:431-:d:772407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/431/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wencelito Palis Hintural & Hee-Gyu Woo & Hyeongwon Choi & Hyo-Lim Lee & HaSu Lim & Woo Bin Youn & Byung Bae Park, 2024. "Ecosystem Services Synergies and Trade-Offs from Tree Structural Perspectives: Implications for Effective Urban Green Space Management and Strategic Land Use Planning," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    2. Ying Zheng & Qiyao Han & Greg Keeffe, 2024. "An Evaluation of Different Landscape Design Scenarios to Improve Outdoor Thermal Comfort in Shenzhen," Land, MDPI, vol. 13(1), pages 1-17, January.
    3. Xiaoyu Li & Jingxi Peng & Dongying Li & Robert D. Brown, 2023. "A Framework for Evidence-Based Landscape Architecture: Cooling a Hot Urban Climate through Design," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    4. Ying Zheng & Greg Keeffe & Jasna Mariotti, 2023. "Nature-Based Solutions for Cooling in High-Density Neighbourhoods in Shenzhen: A Case Study of Baishizhou," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:431-:d:772407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.