IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p326-d756510.html
   My bibliography  Save this article

Global Economic and Diet Transitions Drive Latin American and Caribbean Forest Change during the First Decade of the Century: A Multi-Scale Analysis of Socioeconomic, Demographic, and Environmental Drivers of Local Forest Cover Change

Author

Listed:
  • David López-Carr

    (Department of Geography, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
    These authors contributed equally to this work.)

  • Sadie J. Ryan

    (Department of Geography, University of Florida, Gainesville, FL 32601, USA
    Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
    School of Life Sciences, College of Agriculture, Science, and Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
    These authors contributed equally to this work.)

  • Matthew L. Clark

    (Center for Interdisciplinary Geospatial Analysis, Department of Geography, Environment, and Planning, Sonoma State University, Rohnert Park, CA 94928, USA)

Abstract

Latin America and the Caribbean (LAC) contain more tropical high-biodiversity forest than the remaining areas of the planet combined, yet experienced more than a third of global deforestation during the first decade of the 21st century. While drivers of forest change occur at multiple scales, we examined forest change at the municipal and national scales integrated with global processes such as capital, commodity, and labor flows. We modeled multi-scale socioeconomic, demographic, and environmental drivers of local forest cover change. Consistent with LAC’s global leadership in soy and beef exports, primarily to China, Russia, the US, and the EU, national-level beef and soy production were the primary land use drivers of decreased forest cover. National level gross domestic product (GDP), migrant worker remittances and foreign investment, along with municipal-level temperature and area, were also significantly related to reduced forest cover. This challenges forest transition frameworks, which theorize that rising GDP and intensified agricultural production should be increasingly associated with forest regrowth. Instead, LAC forest change was linked to local, national, and global demographic, dietary and economic transitions, resulting in massive net forest cover loss. This suggests an urgent need to reconcile forest conservation with mounting global demand for animal protein.

Suggested Citation

  • David López-Carr & Sadie J. Ryan & Matthew L. Clark, 2022. "Global Economic and Diet Transitions Drive Latin American and Caribbean Forest Change during the First Decade of the Century: A Multi-Scale Analysis of Socioeconomic, Demographic, and Environmental Dr," Land, MDPI, vol. 11(3), pages 1-11, February.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:326-:d:756510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Calcagno, Vincent & de Mazancourt, Claire, 2010. "glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i12).
    2. Philip M. Fearnside, 2015. "Deforestation soars in the Amazon," Nature, Nature, vol. 521(7553), pages 423-423, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinfeng Wang & Ya Li & Sheng Wang & Qing Li & Lingfeng Li & Xiaoling Liu, 2023. "Assessment of Multiple Ecosystem Services and Ecological Security Pattern in Shanxi Province, China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernanda Bento Rosa Gomes & Cecilia de Mattos Canella & Otávio Eurico de Aquino Branco & Mariana C. Coelho Silva Castro & Samuel Rodrigues Castro, 2020. "Deforestation in Legal Amazon: A Panel Data Analysis of Potential Interferers," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 10(2), pages 1-97, December.
    2. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    3. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    4. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    5. Bhattacharjee, Arnab & Aravena, Claudia & Castillo, Natalia & Ehrlich, Marco & Taou, Nadia & Wagner, Thomas, 2022. "Agroforestry Programs in the Colombian Amazon: Selection, Treatment and Exposure Effects on Deforestation," National Institute of Economic and Social Research (NIESR) Discussion Papers 537, National Institute of Economic and Social Research.
    6. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    7. Lisa L. Rausch & Holly K. Gibbs, 2016. "Property Arrangements and Soy Governance in the Brazilian State of Mato Grosso: Implications for Deforestation-Free Production," Land, MDPI, vol. 5(2), pages 1-16, March.
    8. László Kovács, 2019. "Applications of Metaheuristics in Insurance," Society and Economy, Akadémiai Kiadó, Hungary, vol. 41(3), pages 371-395, September.
    9. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    10. Verónica Lloréns-Rico & Ann C. Gregory & Johan Van Weyenbergh & Sander Jansen & Tina Van Buyten & Junbin Qian & Marcos Braz & Soraya Maria Menezes & Pierre Van Mol & Lore Vanderbeke & Christophe Dooms, 2021. "Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Hongbo Guo & Enzai Du & César Terrer & Robert B. Jackson, 2024. "Global distribution of surface soil organic carbon in urban greenspaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Lisa Cherry & Darren Mollendor & Bill Eisenstein & Terri S. Hogue & Katharyn Peterman & John E. McCray, 2019. "Predicting Parcel-Scale Redevelopment Using Linear and Logistic Regression—the Berkeley Neighborhood Denver, Colorado Case Study," Sustainability, MDPI, vol. 11(7), pages 1-16, March.
    14. Joon-myoung Kwon & Ki-Hyun Jeon & Hyue Mee Kim & Min Jeong Kim & Sungmin Lim & Kyung-Hee Kim & Pil Sang Song & Jinsik Park & Rak Kyeong Choi & Byung-Hee Oh, 2019. "Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-15, October.
    15. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Konstantin A. Kholodilin, 2016. "War, housing rents, and free market: Berlin's rental housing during World War I," European Review of Economic History, European Historical Economics Society, vol. 20(3), pages 322-344.
    17. Konstantin A. Kholodilin, 2015. "War, Housing Rents, and Free Market: A Case of Berlin's Rental Housing Market during the World War I," Discussion Papers of DIW Berlin 1477, DIW Berlin, German Institute for Economic Research.
    18. Ervin, Daniel & Lopéz-Carr, David & Riosmena, Fernando & Ryan, Sadie J., 2020. "Examining the relationship between migration and forest cover change in Mexico from 2001 to 2010," Land Use Policy, Elsevier, vol. 91(C).
    19. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    20. Geshere Abdisa Gurmesa & Ang Wang & Shanlong Li & Shushi Peng & Wim Vries & Per Gundersen & Philippe Ciais & Oliver L. Phillips & Erik A. Hobbie & Weixing Zhu & Knute Nadelhoffer & Yi Xi & Edith Bai &, 2022. "Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:326-:d:756510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.