IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i2p153-d728098.html
   My bibliography  Save this article

Land Use Change in the Cross-Boundary Regions of a Metropolitan Area: A Case Study of Tongzhou-Wuqing-Langfang

Author

Listed:
  • Linlin Dai

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Zixin Zhan

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Yeshuo Shu

    (College of Architecture and Landscape, Peking University, Beijing 100871, China)

  • Xiao Rong

    (Department of Architecture, Shanghai University, Shanghai 200072, China)

Abstract

Since the 1980s, metropolitan areas have increased worldwide due to urbanization and regionalization. While the spatial integration of the labor and housing markets has benefitted the development of cities within metropolitan areas, they have also brought great challenges for land governance; this is particularly evident in cross-boundary regions due to the complex relations between the markets and the regulations and between governments at different levels. Extensive research has been conducted on the city-level analysis of socioeconomic integration, land use development, and urban governance within metropolitan areas; yet, it is insufficient for understanding the intricate interplay between the various forces in such regions. This study aims to reveal the dynamics of land use change from 1990–2020 and its driving forces in the recent decade in the Tongzhou-Wuqing-Langfang (TWL) region—a typical cross-boundary area between Beijing, Tianjin, and the Hebei Metropolitan Area—using Landsat imagery. We employed the land-use dynamic degree, kernel density analysis, principal component analysis, and multiple linear regression to explore the spatiotemporal patterns of land use change and its driving factors at the district/county level. The results show that the general land use changes from cultivated and forest land to urban and rural construction land across the region. The speed of the trend varies considerably over time between different areas as the land use policies and regulations of each local government change. The population growth and the tertiary and secondary industry growth are the main driving factors for the change in construction land across the whole TWL region, while the urbanization rate and fixed asset investment have different impacts across the cross-boundary region. The results suggest that expanding the integration of land use policies and regulations in the cross-boundary region is urgently required.

Suggested Citation

  • Linlin Dai & Zixin Zhan & Yeshuo Shu & Xiao Rong, 2022. "Land Use Change in the Cross-Boundary Regions of a Metropolitan Area: A Case Study of Tongzhou-Wuqing-Langfang," Land, MDPI, vol. 11(2), pages 1-22, January.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:153-:d:728098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/2/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/2/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongji Chen & Kangchuan Su & Lixian Peng & Guohua Bi & Lulu Zhou & Qingyuan Yang, 2022. "Mixed Land Use Levels in Rural Settlements and Their Influencing Factors: A Case Study of Pingba Village in Chongqing, China," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    2. Shuhan Deng & Yihui Huang & Hongsheng Chen, 2023. "Study on the Characteristics and Influencing Factors of Land Use Changes in the Metropolitan Fringe Area: The Case of Shenzhen Metropolitan Area in China," Land, MDPI, vol. 12(9), pages 1-16, September.
    3. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2023. "Analyzing the Land Use and Cover Change Inside and Outside China’s Ecological Function Area," Land, MDPI, vol. 12(7), pages 1-14, July.
    4. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2022. "Revealing the Impact of Protected Areas on Land Cover Volatility in China," Land, MDPI, vol. 11(8), pages 1-16, August.
    5. Mengjia Zhen & Junlan Yu & Siyi Chen & Ning Wang & Zhigang Chen, 2023. "Evaluating the Impact of County-to-District Transformation on Urban Residential Land Supply: A Multi-Period Difference-in-Differences Model Analysis," Land, MDPI, vol. 12(6), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    3. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Anna Raschke & J. Sebastian Hernandez-Suarez & A. Pouyan Nejadhashemi & Kalyanmoy Deb, 2021. "Multidimensional Aspects of Sustainable Biofuel Feedstock Production," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    5. Hongshen Li & Hongrui Liu & Shizhong Li, 2021. "Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation," Energies, MDPI, vol. 14(19), pages 1-14, October.
    6. Milovanoff, Alexandre & Posen, I. Daniel & Saville, Bradley A. & MacLean, Heather L., 2020. "Well-to-wheel greenhouse gas implications of mid-level ethanol blend deployment in Canada's light-duty fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    8. Camille Jeandaux & Jean-Baptiste Videau & Anne Prieur-Vernat, 2021. "Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    9. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:153-:d:728098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.