IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2231-d996501.html
   My bibliography  Save this article

Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China

Author

Listed:
  • Ziliang Xiao

    (School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, China)

  • Shaoliang Zhang

    (School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, China)

  • Pengke Yan

    (School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, China)

  • Jiping Huo

    (School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, China)

  • Muhammad Aurangzeib

    (School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Rd, Harbin 150030, China)

Abstract

Although huge numbers of gullies have been widely formed and have severely decreased the quality of farmlands in mollisols, it is still unclear how the microbial community distributes after natural vegetation restoration (NVR), which highly relates to the ecological functions in the farmland. In this study, both the microbial community and their potential ecological functions after NVR were reviewed, together with the environmental factors relating to microbial evolution which were detected in two gullies of mollisols situated on farmland in Northeast China. The main results showed that NVR improved the microbial diversity and complexity of the co-occurrence network in gullies, and promoted bacterial community composition to be similar between the gully and deposition area. Moreover, the soil organic matter (SOM) regulated the microbial diversity by balancing soil available phosphorus (AP), soil moisture (SM), and pH, thus stimulating the key bacterial biomarkers of gullies (Rhizobiales, Microtrichales, TRA3-20) and regulating the bacterial composition, as well as indirectly enriching the function of bacteria to perform denitrification, C fixation, and phosphorus transport in gullies. In addition, abundant Dicotyledons in gullies mainly regulate the fungal community composition, and increased fungal richness in 0–20 cm soil depth, but decreased bacteria richness in 0–20 cm soil depth. Our findings revealed the repair mechanism of NVR on soil bacterial and fungal communities, especially on bacterial functionality, which should be given further attention in nutrient cycling across eroding mollisols in gullies.

Suggested Citation

  • Ziliang Xiao & Shaoliang Zhang & Pengke Yan & Jiping Huo & Muhammad Aurangzeib, 2022. "Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China," Land, MDPI, vol. 11(12), pages 1-18, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2231-:d:996501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongjun Ni & Kaixuan Wang & Shuaishuai Lv & Xingxing Wang & Lu Zhuo & Jiaqiao Zhang, 2020. "Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater," Energies, MDPI, vol. 13(9), pages 1-11, May.
    2. Hongjun Ni & Kaixuan Wang & Shuaishuai Lv & Xingxing Wang & Jiaqiao Zhang & Lu Zhuo & Fei Li, 2020. "Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater," Energies, MDPI, vol. 13(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Cydzik-Kwiatkowska & Dawid Nosek, 2022. "Advances in Microbial Fuel Cell Technologies," Energies, MDPI, vol. 15(16), pages 1-3, August.
    2. Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.
    3. Hongjun Ni & Kaixuan Wang & Shuaishuai Lv & Xingxing Wang & Jiaqiao Zhang & Lu Zhuo & Fei Li, 2020. "Effects of Modified Anodes on the Performance and Microbial Community of Microbial Fuel Cells Using Swine Wastewater," Energies, MDPI, vol. 13(15), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2231-:d:996501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.