IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2180-d990399.html
   My bibliography  Save this article

Comparison of Random Forest and Kriging Models for Soil Organic Carbon Mapping in the Himalayan Region of Kashmir

Author

Listed:
  • Iqra Farooq

    (Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Shabir Ahmed Bangroo

    (Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India
    School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada)

  • Owais Bashir

    (Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Tajamul Islam Shah

    (Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Ajaz A. Malik

    (Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Asif M. Iqbal

    (Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Syed Sheraz Mahdi

    (Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Owais Ali Wani

    (Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Nageena Nazir

    (Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Jammu and Kashmir, India)

  • Asim Biswas

    (School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada)

Abstract

The knowledge about the spatial distribution of soil organic carbon stock (SOCS) helps in sustainable land-use management and ecosystem functioning. No such study has been attempted in the complex topography and land use of Himalayas, which is associated with great spatial heterogeneity and uncertainties. Therefore, in this study digital soil mapping (DSM) was used to predict and evaluate the spatial distribution of SOCS using advanced geostatistical methods and a machine learning algorithm in the Himalayan region of Jammu and Kashmir, India. Eighty-three soil samples were collected across different land uses. Auxiliary variables (spectral indices and topographic parameters) derived from satellite data were used as predictors. Geostatistical methods—ordinary kriging (OK) and regression kriging (RK)—and a machine learning method—random forest (RF)—were used for assessing the spatial distribution and variability of SOCS with inter-comparison of models for their prediction performance. The best fit model validation criteria used were coefficient of determination (R2) and root mean square error (RMSE) with resulting maps validated by cross-validation. The SOCS concentration varied from 1.12 Mg/ha to 70.60 Mg/ha. The semivariogram analysis of OK and RK indicated moderate spatial dependence. RF (RMSE = 8.21) performed better than OK (RMSE = 15.60) and RK (RMSE = 17.73) while OK performed better than RK. Therefore, it may be concluded that RF provides better estimation and spatial variability of SOCS; however, further selection and choice of auxiliary variables and higher soil sampling density could improve the accuracy of RK prediction.

Suggested Citation

  • Iqra Farooq & Shabir Ahmed Bangroo & Owais Bashir & Tajamul Islam Shah & Ajaz A. Malik & Asif M. Iqbal & Syed Sheraz Mahdi & Owais Ali Wani & Nageena Nazir & Asim Biswas, 2022. "Comparison of Random Forest and Kriging Models for Soil Organic Carbon Mapping in the Himalayan Region of Kashmir," Land, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2180-:d:990399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Nasir M. & Rastoskuev, Victor V. & Sato, Y. & Shiozawa, S., 2005. "Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 96-109, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Su & Xinjun Wang & Songrui Ning & Jiandong Sheng & Pingan Jiang & Shenghan Gao & Qiulan Yang & Zhixin Zhou & Hanyu Cui & Zhilin Li, 2024. "Enhancing Soil Salinity Evaluation Accuracy in Arid Regions: An Integrated Spatiotemporal Data Fusion and AI Model Approach for Arable Lands," Land, MDPI, vol. 13(11), pages 1-20, November.
    2. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    3. Maxime Dumont & Guilhem Brunel & Paul Tresson & Jérôme Nespoulous & Hassan Boukcim & Marc Ducousso & Stéphane Boivin & Olivier Taugourdeau & Bruno Tisseyre, 2024. "Operational sampling designs for poorly accessible areas based on a multi-objective optimization method," Post-Print hal-04566087, HAL.
    4. Weitao Lv & Xiasong Hu & Xilai Li & Jimei Zhao & Changyi Liu & Shuaifei Li & Guorong Li & Haili Zhu, 2024. "Multi-Model Comprehensive Inversion of Surface Soil Moisture from Landsat Images Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    5. Min Ma & Yi Hao & Qingchun Huang & Yongxin Liu & Liancun Xiu & Qi Gao, 2024. "Soil Salinity Estimation by 3D Spectral Space Optimization and Deep Soil Investigation in the Songnen Plain, Northeast China," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    6. Mohamed Elhedi Gharsallah & Hamouda Aichi & Talel Stambouli & Zouhair Ben Rabah & Habib Ben Hassine, 2022. "Assessment and mapping of soil salinity using electromagnetic induction and Landsat 8 OLI remote sensing data in an irrigated olive orchard under semi-arid conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 15-28.
    7. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.
    8. Jiawen Hou & Mao Ye, 2022. "Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    9. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    10. Ramos, Tiago B. & Castanheira, Nádia & Oliveira, Ana R. & Paz, Ana Marta & Darouich, Hanaa & Simionesei, Lucian & Farzamian, Mohammad & Gonçalves, Maria C., 2020. "Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Lezíria Grande, Portugal," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    12. Billal Hossen & Helmut Yabar & Md Jamal Faruque, 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh," Land, MDPI, vol. 11(10), pages 1-18, October.
    13. Shuai Li & Pu Guo & Fei Sun & Jinlei Zhu & Xiaoming Cao & Xue Dong & Qi Lu, 2024. "Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China," Land, MDPI, vol. 13(6), pages 1-20, June.
    14. Sheshu Zhang & Jun Zhao & Jianxia Yang & Jinfeng Xie & Ziyun Sun, 2024. "Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China," Land, MDPI, vol. 13(6), pages 1-21, June.
    15. Yasin ul Haq & Muhammad Shahbaz & H. M. Shahzad Asif & Ali Al-Laith & Wesam H. Alsabban, 2023. "Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    16. repec:caa:jnlswr:v:preprint:id:5-2024-swr is not listed on IDEAS
    17. Hui Deng & Wenjiang Zhang & Xiaoqian Zheng & Houxi Zhang, 2024. "Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image," Agriculture, MDPI, vol. 14(4), pages 1-17, March.
    18. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    19. Achivir Stella Yawe & Changlai Xiao & Oluwafemi Adewole Adeyeye & Mingjun Liu & Xiaoya Feng & Xiujuan Liang, 2022. "Spatio-Temporal Evolution of the Ecological Environment in a Typical Semi-Arid Region of Northeast China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    20. Azamat Suleymanov & Ilyusya Gabbasova & Mikhail Komissarov & Ruslan Suleymanov & Timur Garipov & Iren Tuktarova & Larisa Belan, 2023. "Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
    21. Tharani Gopalakrishnan & Lalit Kumar, 2020. "Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka," Sustainability, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2180-:d:990399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.