IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1685-d928766.html
   My bibliography  Save this article

Increasing Spatial Mismatch of Cropland-Grain Production-Population in China over the Past Two Decades

Author

Listed:
  • Lanhui Li

    (School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
    Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, Xiamen 361024, China)

  • Pingshan Jiang

    (School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

  • Wenfeng Liu

    (School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

  • Yaxin Sun

    (School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

  • Zhanhao Dang

    (School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China)

Abstract

Identifying the spatiotemporal coupling characteristics of cropland-grain production-population is essential for the rational utilization of cropland and the evaluation of national and regional food security. Based on the grain production statistical data, GlobeLand30, and WorldPop data in the years 2000, 2010, and 2020, the spatiotemporal changes in China’s cropland area, grain production, and population and their coupling characteristics over the past two decades were detected at the grid level using the models of barycenter fitting and coupled dynamic analysis. The results showed that spatial change of cropland area in China was roughly characterized by the increase in the northwest and the decrease in the southeast; while grain production was characterized by an increase in the north and a decrease in the south, and population was roughly characterized by an increase in urban areas of the southeast coastal regions and a decrease in traditional agricultural areas. The barycenter of cropland area and that of grain production moved toward the northwest and the northeast, respectively, which mismatch the spatial pattern of hydro-thermal conditions of cropland resources in China and thus result in the increased risk of the national grain production system. Meanwhile, the barycenter of grain production and that of population continued to move in opposite directions overall, and the distances between their barycenters increased from 119.65 km in 2000 to 455.16 km in 2020, indicating that the phenomenon of ‘north-to-south grain diversion’ is intensifying. Our results highlight that the spatial mismatch of cropland-grain production-population in China has increased over the past two decades.

Suggested Citation

  • Lanhui Li & Pingshan Jiang & Wenfeng Liu & Yaxin Sun & Zhanhao Dang, 2022. "Increasing Spatial Mismatch of Cropland-Grain Production-Population in China over the Past Two Decades," Land, MDPI, vol. 11(10), pages 1-14, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1685-:d:928766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin, Liangjie & Li, Xiubin, 2018. "China should not massively reclaim new farmland," Land Use Policy, Elsevier, vol. 72(C), pages 12-15.
    2. Yuanzhi Guo & Jieyong Wang, 2021. "Identifying the Determinants of Nongrain Farming in China and Its Implications for Agricultural Development," Land, MDPI, vol. 10(9), pages 1-16, August.
    3. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    4. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    5. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    6. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    2. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    3. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    4. Songze Wu & Dongyan Wang, 2023. "Storing Grain in the Land: The Gestation, Delineation Framework, and Case of the Two Zones Policy in China," Land, MDPI, vol. 12(4), pages 1-25, April.
    5. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    6. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).
    7. Peng Cheng & Houtian Tang & Yue Dong & Ke Liu & Ping Jiang & Yaolin Liu, 2021. "Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer," IJERPH, MDPI, vol. 18(24), pages 1-22, December.
    8. Junjun Zhi & Xinyue Cao & Wangbing Liu & Yang Sun & Da Xu & Caiwei Da & Lei Jin & Jin Wang & Zihao Zheng & Shuyuan Lai & YongJiao Liu & Guohai Zhu, 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China," Land, MDPI, vol. 12(8), pages 1-21, July.
    9. Tao Pan & Ru Zhang, 2022. "Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China," Land, MDPI, vol. 11(8), pages 1-18, July.
    10. De Yu & Shougeng Hu & Luyi Tong & Cong Xia, 2020. "Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China," Land, MDPI, vol. 9(12), pages 1-22, December.
    11. Yu Zhang & Na Gong & Huade Zhu, 2023. "Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    12. Taiyang Zhong & Zhenzhong Si & Steffanie Scott & Jonathan Crush & Kui Yang & Xianjin Huang, 2021. "Comprehensive Food System Planning for Urban Food Security in Nanjing, China," Land, MDPI, vol. 10(10), pages 1-17, October.
    13. Liu, Jing & Jin, Xiaobin & Xu, Weiyi & Fan, Yeting & Ren, Jie & Zhang, Xiaolin & Zhou, Yinkang, 2019. "Spatial coupling differentiation and development zoning trade-off of land space utilization efficiency in eastern China," Land Use Policy, Elsevier, vol. 85(C), pages 310-327.
    14. Lijun Xie & Zhongke Bai & Boyu Yang & Shuai Fu, 2022. "Simulation Analysis of Land-Use Pattern Evolution and Valuation of Terrestrial Ecosystem Carbon Storage of Changzhi City, China," Land, MDPI, vol. 11(8), pages 1-31, August.
    15. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    16. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    17. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    18. Yan Zhou & Tao Chen & Jingjing Wang & Xiaolan Xu, 2023. "Analyzing the Factors Driving the Changes of Ecosystem Service Value in the Liangzi Lake Basin—A GeoDetector-Based Application," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    19. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.
    20. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1685-:d:928766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.