IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i7p696-d587136.html
   My bibliography  Save this article

Microbial Respiration and Enzyme Activity Downstream from a Phosphorus Source in the Everglades, Florida, USA

Author

Listed:
  • Sanku Dattamudi

    (Department of Earth and Environment, Florida International University, Miami, FL 33199, USA)

  • Saoli Chanda

    (Department of Earth and Environment, Florida International University, Miami, FL 33199, USA)

  • Leonard J. Scinto

    (Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
    Southeast Environmental Research Center, Institute of Environment, Florida International University, Miami, FL 33199, USA)

Abstract

Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO 2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO 2 efflux was greater at M sites (average 2.72 µmoles g dw −1 h −1 ) than the other two sites. We also found that amendments of glucose increased CO 2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C.

Suggested Citation

  • Sanku Dattamudi & Saoli Chanda & Leonard J. Scinto, 2021. "Microbial Respiration and Enzyme Activity Downstream from a Phosphorus Source in the Everglades, Florida, USA," Land, MDPI, vol. 10(7), pages 1-8, July.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:696-:d:587136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/7/696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/7/696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. M. Nahlik & M. S. Fennessy, 2016. "Carbon storage in US wetlands," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    2. Kristin Schade-Poole & Gregory Möller, 2016. "Impact and Mitigation of Nutrient Pollution and Overland Water Flow Change on the Florida Everglades, USA," Sustainability, MDPI, vol. 8(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Warnell, Katherine J.D. & Russell, Marc & Rhodes, Charles & Bagstad, Kenneth J. & Olander, Lydia P. & Nowak, David J. & Poudel, Rajendra & Glynn, Pierre D. & Hass, Julie L. & Hirabayashi, Satoshi & In, 2020. "Testing ecosystem accounting in the United States: A case study for the Southeast," Ecosystem Services, Elsevier, vol. 43(C).
    2. Han, Albert Tonghoon & Daniels, Thomas L. & Kim, Chaeri, 2022. "Managing urban growth in the wake of climate change: Revisiting greenbelt policy in the US," Land Use Policy, Elsevier, vol. 112(C).
    3. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Vallecillo, Sara & La Notte, Alessandra & Ferrini, Silvia & Maes, Joachim, 2019. "How ecosystem services are changing: an accounting application at the EU level," Ecosystem Services, Elsevier, vol. 40(C).
    5. Xue Zhang & Xiaodong Yu & Yunxiao Cao & Jiani Yue & Shan Wang & Yunxia Liu, 2024. "The effects of diverse microbial community structures, driven by arbuscular mycorrhizal fungi inoculation, on carbon release from a paddy field," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(1), pages 48-59.
    6. repec:caa:jnlpse:v:preprint:id:340-2023-pse is not listed on IDEAS
    7. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    8. J. Walter Milon, 2019. "The polluter pays principle and Everglades restoration," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(1), pages 67-81, March.
    9. Kristof Dorau & Tim Mansfeldt, 2023. "Vulnerability of diked marsh ecosystems under climate change," Climatic Change, Springer, vol. 176(3), pages 1-16, March.
    10. Shama E. Haque, 2023. "The Effects of Climate Variability on Florida’s Major Water Resources," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    11. Graversgaard, Morten & Jacobsen, Brian H. & Hoffmann, Carl Christian & Dalgaard, Tommy & Odgaard, Mette Vestergaard & Kjaergaard, Charlotte & Powell, Neil & Strand, John A. & Feuerbach, Peter & Tonder, 2021. "Policies for wetlands implementation in Denmark and Sweden – historical lessons and emerging issues," Land Use Policy, Elsevier, vol. 101(C).
    12. Tomscha, Stephanie & Jackson, Bethanna & Benavidez, Rubianca & de Róiste, Mairéad & Hartley, Stephen & Deslippe, Julie, 2023. "A multiscale perspective on how much wetland restoration is needed to achieve targets for ecosystem services," Ecosystem Services, Elsevier, vol. 61(C).
    13. John Clunes & Susana Valle & Jose Dörner & Marco Campos & Jorge Medina & Sarah Zuern & Lorena Lagos, 2022. "Changes in Soil Quality of an Urban Wetland as a Result of Anthropogenic Disturbance," Land, MDPI, vol. 11(3), pages 1-18, March.
    14. Anthony J. Stewart & Meghan Halabisky & Chad Babcock & David E. Butman & David V. D’Amore & L. Monika Moskal, 2024. "Revealing the hidden carbon in forested wetland soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:696-:d:587136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.