IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1390-d703520.html
   My bibliography  Save this article

Identification of Regional Drought Processes in North China Using MCI Analysis

Author

Listed:
  • Xiuhua Cai

    (Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Wenqian Zhang

    (Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Xiaoyi Fang

    (Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Qiang Zhang

    (National Climate Centre, China Meteorological Administration (CMA), Beijing 100081, China)

  • Cunjie Zhang

    (National Climate Centre, China Meteorological Administration (CMA), Beijing 100081, China)

  • Dong Chen

    (Public Meteorological Service Center, China Meteorological Administration (CMA), Beijing 100081, China)

  • Chen Cheng

    (Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Wenjie Fan

    (China Meteorological Administration Training Centre, Beijing 100081, China)

  • Ying Yu

    (Chinese Academy of Meteorological Sciences, Beijing 100081, China)

Abstract

Comprehensive identification of drought events is of great significance for monitoring and evaluating drought processes. Based on the date of daily precipitation, temperature and drought-affected area of 403 meteorological stations in North China from 1960 to 2019, the Comprehensive Drought Process Intensity Index (CDPII) has been developed by using the Meteorological-drought Composite Index (MCI) and regional drought process identification method, as well as the EIDR theory method. The regional drought processes in the past 60 years in North China, including Beijing, Tianjin, Hebei, Shanxi and Middle Inner Mongolia, were analyzed and identified. The result shows that the distribution characteristic of droughts with different intensities is as follows: The number of days of all annual-average mild droughts, moderate droughts and severe droughts was highest in Tianjin and that of extreme droughts was highest in Shanxi. The number of days of mild droughts was highest in May and lowest in January. The number of days of moderate droughts was highest in June. The number of days with mild and moderate drought showed an overall increasing trend, while the number of days with severe drought and above showed an overall decreasing trend (through a 95% significance test). The number of drought days was the highest in the 1990s. The annual frequency of drought is between 66.7% and 86.7%; the drought frequency in Hebei is the highest at 86.7%, followed by Beijing at 80%. There were 75 regional drought processes in North China from 1960 to 2019, and the correlation coefficient between process intensity and the drought-affected area was 0.55, which passed the 99% significance test. The comprehensive intensity of drought process from 27 April to 1 September 1972 was the strongest. From 18 May to 31 October 1965, the drought lasted 167 days. The overall drought intensity had a slight weakening trend in the past 60 years. A total of 75 regional drought processes occurred in North China, and the process intensity showed a trend of wavy decline with a determination coefficient (R 2 ) of 0.079 (95% significance test). Overall, the regional drought process identification method and strength assessment result tally with the drought disaster, which can better identify the regional drought process. Furthermore, including the last days, the average intensity, average scope comprehensive strength, there are many angles to monitor and evaluate the drought and drought process. These provide a reference for drought control and decision-making.

Suggested Citation

  • Xiuhua Cai & Wenqian Zhang & Xiaoyi Fang & Qiang Zhang & Cunjie Zhang & Dong Chen & Chen Cheng & Wenjie Fan & Ying Yu, 2021. "Identification of Regional Drought Processes in North China Using MCI Analysis," Land, MDPI, vol. 10(12), pages 1-19, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1390-:d:703520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Marambanyika & Upenyu Naume Mupfiga & Tatenda Musasa & Keto Ngwenya, 2021. "Local Perceptions on the Impact of Drought on Wetland Ecosystem Services and Associated Household Livelihood Benefits: The Case of the Driefontein Ramsar Site in Zimbabwe," Land, MDPI, vol. 10(6), pages 1-19, June.
    2. Nana Luo & Dehua Mao & Bolong Wen & Xingtu Liu, 2020. "Climate Change Affected Vegetation Dynamics in the Northern Xinjiang of China: Evaluation by SPEI and NDVI," Land, MDPI, vol. 9(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuhua Cai & Wenqian Zhang & Cunjie Zhang & Qiang Zhang & Jingli Sun & Chen Cheng & Wenjie Fan & Ying Yu & Xiaoling Liu, 2022. "Identification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China," Land, MDPI, vol. 11(6), pages 1-21, June.
    2. Xiaoyan Tang & Yongjiu Feng & Chen Gao & Zhenkun Lei & Shurui Chen & Rong Wang & Yanmin Jin & Xiaohua Tong, 2023. "Entropy-weight-based spatiotemporal drought assessment using MODIS products and Sentinel-1A images in Urumqi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 387-408, October.
    3. Oiliam Stolarski & João A. Santos & André Fonseca & Chenyao Yang & Henrique Trindade & Helder Fraga, 2023. "Climate Change Impacts on Grassland Vigour in Northern Portugal," Land, MDPI, vol. 12(10), pages 1-18, October.
    4. Yang Wang & Remina Shataer & Tingting Xia & Xueer Chang & Hui Zhen & Zhi Li, 2021. "Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    5. Yongchao Duan & Min Luo & Xiufeng Guo & Peng Cai & Fu Li, 2021. "Study on the Relationship between Snowmelt Runoff for Different Latitudes and Vegetation Growth Based on an Improved SWAT Model in Xinjiang, China," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Hejie Wei & Jiaxin Zheng & Dong Xue & Xiaobin Dong & Mengxue Liu & Yali Zhang, 2022. "Identifying the Relationship between Livelihoods and Land Ecosystem Services Using a Coupled Model: A Case Study in the “One River and Two Tributaries” Region of Tibet," Land, MDPI, vol. 11(9), pages 1-23, August.
    7. Shengxin Lan & Zuoji Dong, 2022. "Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang," Sustainability, MDPI, vol. 14(1), pages 1-15, January.
    8. Haochen Yu & Zhengfu Bian & Shouguo Mu & Junfang Yuan & Fu Chen, 2020. "Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China," IJERPH, MDPI, vol. 17(13), pages 1-25, July.
    9. Huaijun Wang & Zhi Li & Lei Cao & Ru Feng & Yingping Pan, 2021. "Response of NDVI of Natural Vegetation to Climate Changes and Drought in China," Land, MDPI, vol. 10(9), pages 1-24, September.
    10. Yu Zhang & Na Gong & Huade Zhu, 2023. "Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    11. Wan-Jiun Chen, 2022. "Toward Sustainability: Dynamics of Total Carbon Dioxide Emissions, Aggregate Income, Non-Renewable Energy, and Renewable Power," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    12. Shuping Fan & Peng Li & Qi He & Jiaru Cheng & Mingfeng Zhang & Nan Wu & Song Yang & Shidong Pan, 2022. "Study on the Spatial-Temporal Evolution of Land Use Ecosystem Service Value and Its Zoning Management and Control in the Typical Alpine Valley Area of Southeast Tibet—Empirical Analysis Based on Panel," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    13. Takunda Shabani & Vurayayi Timothy Mutekwa & Tapiwa Shabani, 2024. "Developing a Sustainable Integrated Solid Waste Management Framework for Rural Hospitals in Chirumanzu District, Zimbabwe," Circular Economy and Sustainability, Springer, vol. 4(2), pages 1183-1217, June.
    14. Ana Milanović Pešić & Tamara Jojić Glavonjić & Stefan Denda & Dejana Jakovljević, 2023. "Sustainable Tourism Development and Ramsar Sites in Serbia: Exploring Residents’ Attitudes and Water Quality Assessment in the Vlasina Protected Area," Sustainability, MDPI, vol. 15(21), pages 1-27, October.
    15. Xiuwei Xing & Jing Qian & Xi Chen & Chaoliang Chen & Jiayu Sun & Shujie Wei & Duman Yimamaidi & Zhahan Zhanar, 2022. "Analysis of Effects of Recent Changes in Hydrothermal Conditions on Vegetation in Central Asia," Land, MDPI, vol. 11(3), pages 1-27, February.
    16. Yan Li & Jie Gong & Yunxia Zhang & Bingli Gao, 2022. "NDVI-Based Greening of Alpine Steppe and Its Relationships with Climatic Change and Grazing Intensity in the Southwestern Tibetan Plateau," Land, MDPI, vol. 11(7), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1390-:d:703520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.