IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1334-d694704.html
   My bibliography  Save this article

Evapotranspiration Measurements and Assessment of Driving Factors: A Comparison of Different Green Roof Systems during Summer in Germany

Author

Listed:
  • Dominik Gößner

    (Optigrün International AG, 72505 Krauchenwies, Germany)

  • Milena Mohri

    (Optigrün International AG, 72505 Krauchenwies, Germany)

  • Justine Jasmin Krespach

    (Optigrün International AG, 72505 Krauchenwies, Germany)

Abstract

Green roofs have proven to be a space-saving solution to mitigate peak temperatures and control floods in urban areas through evaporative cooling and storm water retention. To encourage a sustainable city design with large-scale green infrastructure networks, a better differentiation between the diverse existing green roof systems is needed. The aim of this study is to demonstrate differences among green roof systems based on comprehensive microclimatic measurements on four small experimental roofs and to assess differences in evapotranspiration with a partial least square regression. The results show that short-wave solar radiation, relative humidity and water availability are the most important drivers of evapotranspiration. The roof system with permanent water storage maintained significantly higher substrate moisture compared to the other roofs and produced peak evapotranspiration rates of 4.88 mm d −1 . The highest total evapo-transpiration of 526 mm from April to September was recorded for the roof system with the thickest substrate layer and grass vegetation. In summer, the shallowest roof showed the highest substrate temperature and air temperature at vegetation level. These findings highlight the importance of specifying the characteristics of the various green roofs in order to turn them into useful planning tools for the design of climate-change-resilient cities.

Suggested Citation

  • Dominik Gößner & Milena Mohri & Justine Jasmin Krespach, 2021. "Evapotranspiration Measurements and Assessment of Driving Factors: A Comparison of Different Green Roof Systems during Summer in Germany," Land, MDPI, vol. 10(12), pages 1-22, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1334-:d:694704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    2. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    4. Lilliana L.H. Peng & C. Y. Jim, 2013. "Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation," Energies, MDPI, vol. 6(2), pages 1-21, January.
    5. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    2. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    3. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    4. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    6. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    7. Malka Nadeeshani & Thanuja Ramachandra & Sachie Gunatilake & Nisa Zainudeen, 2021. "Carbon Footprint of Green Roofing: A Case Study from Sri Lankan Construction Industry," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    8. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    10. Licia Felicioni & Antonín Lupíšek & Petr Hájek, 2020. "Major European Stressors and Potential of Available Tools for Assessment of Urban and Buildings Resilience," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    11. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    12. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    13. Yunfang Jiang & Danran Song & Tiemao Shi & Xuemei Han, 2018. "Adaptive Analysis of Green Space Network Planning for the Cooling Effect of Residential Blocks in Summer: A Case Study in Shanghai," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    14. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    15. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    16. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    17. Kwo-Wuu Wang & Yuan-Yu Hsu & Wen-der Yu & Shao-tsai Cheng, 2018. "Determination of Project Procurement Method with a Graphical Analytic Model," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    18. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    19. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    20. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1334-:d:694704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.