IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i9p415-d1481091.html
   My bibliography  Save this article

Forecasting Crude Oil Price Using Multiple Factors

Author

Listed:
  • Hind Aldabagh

    (Computer Science Department, Old Dominion University, Norfolk, VA 23529, USA)

  • Xianrong Zheng

    (Information Technology & Decision Sciences Department, Old Dominion University, Norfolk, VA 23529, USA)

  • Mohammad Najand

    (Finance Department, Old Dominion University, Norfolk, VA 23529, USA)

  • Ravi Mukkamala

    (Computer Science Department, Old Dominion University, Norfolk, VA 23529, USA)

Abstract

In this paper, we predict crude oil price using various factors that may influence its price. The factors considered are physical market, financial, and trading market factors, including seven key factors and the dollar index. Firstly, we select the main factors that may greatly influence the prices. Then, we develop a hybrid model based on a convolutional neural network (CNN) and long short-term memory (LSTM) network to predict the prices. Lastly, we compare the CNN–LSTM model with other models, namely gradient boosting (GB), decision trees (DTs), random forests (RFs), neural networks (NNs), CNN, LSTM, and bidirectional LSTM (Bi–LSTM). The empirical results show that the CNN–LSTM model outperforms these models.

Suggested Citation

  • Hind Aldabagh & Xianrong Zheng & Mohammad Najand & Ravi Mukkamala, 2024. "Forecasting Crude Oil Price Using Multiple Factors," JRFM, MDPI, vol. 17(9), pages 1-15, September.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:9:p:415-:d:1481091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/9/415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/9/415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
    2. Hadi Jahanshahi & Süleyman Uzun & Sezgin Kaçar & Qijia Yao & Madini O. Alassafi, 2022. "Artificial Intelligence-Based Prediction of Crude Oil Prices Using Multiple Features under the Effect of Russia–Ukraine War and COVID-19 Pandemic," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Chi-Wei & Wang, Dan & Mirza, Nawazish & Zhong, Yifan & Umar, Muhammad, 2023. "The impact of consumer confidence on oil prices," Energy Economics, Elsevier, vol. 124(C).
    2. Zhou, Wei-Xing & Dai, Yun-Shi & Duong, Kiet Tuan & Dai, Peng-Fei, 2024. "The impact of the Russia-Ukraine conflict on the extreme risk spillovers between agricultural futures and spots," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 91-111.
    3. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    4. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    5. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2023. "Natural gas and the utility sector nexus in the U.S.: Quantile connectedness and portfolio implications," Energy Economics, Elsevier, vol. 120(C).
    6. Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    7. Kocaarslan, Baris, 2024. "US dollar and oil market uncertainty: New evidence from explainable machine learning," Finance Research Letters, Elsevier, vol. 64(C).
    8. Chu, Xiaojun & Wan, Xinmin & Qiu, Jianying, 2023. "The relative importance of overnight sentiment versus trading-hour sentiment in volatility forecasting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    9. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    10. Dai, Zhifeng & Zhang, Xiaotong & Liang, Chao, 2024. "Efficient predictability of oil price: The role of VIX-based panic index shadow line difference," Energy Economics, Elsevier, vol. 129(C).
    11. Asadi, Mehrad & Pham, Son D. & Nguyen, Thao T.T. & Do, Hung Xuan & Brooks, Robert, 2023. "The nexus between oil and airline stock returns: Does time frequency matter?," Energy Economics, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:9:p:415-:d:1481091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.