IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i11p475-d1503835.html
   My bibliography  Save this article

Forecasting Orange Juice Futures: LSTM, ConvLSTM, and Traditional Models Across Trading Horizons

Author

Listed:
  • Apostolos Ampountolas

    (School of Hospitality Administration, Boston University, Boston, MA 02215, USA)

Abstract

This study evaluated the forecasting accuracy of various models over 5-day and 10-day trading horizons to predict the prices of orange juice futures (OJ = F). The analysis included traditional models like Autoregressive Integrated Moving Average (ARIMA) and advanced neural network models such as Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Backpropagation Neural Network (BPNN), Support Vector Regression (SVR), and Convolutional Long Short-Term Memory (ConvLSTM), incorporating factors like the Commodities Index and the S&P500 Index. We employed loss function metrics and various tests to assess model performance. The results indicated that for the 5-day horizon, the LSTM and ConvLSTM consistently outperformed the other models. LSTM achieved the lowest error rates and demonstrated superior capability in capturing temporal dependencies, especially in single-factor and S&P500 Index predictions. ConvLSTM also performed strongly, effectively modeling spatial and temporal data patterns. In the 10-day horizon, similar trends were observed. LSTM and ConvLSTM models had significantly lower errors and better alignment with actual values. The BPNN model performed well when all factors were included, and the SVR model maintained consistent accuracy, particularly for single-factor predictions. The Diebold–Mariano (DM) test indicated significant differences in forecasting accuracy, favoring advanced neural network models. In addition, incorporating multiple influencing factors further improved predictive performance, enhancing investment outcomes and reducing risk.

Suggested Citation

  • Apostolos Ampountolas, 2024. "Forecasting Orange Juice Futures: LSTM, ConvLSTM, and Traditional Models Across Trading Horizons," JRFM, MDPI, vol. 17(11), pages 1-18, October.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:11:p:475-:d:1503835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/11/475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/11/475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    2. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    3. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    4. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    5. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    6. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    7. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    8. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    9. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    10. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    11. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    12. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    13. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    14. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    15. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    16. Bhattacharya, Prasad S. & Thomakos, Dimitrios D., 2008. "Forecasting industry-level CPI and PPI inflation: Does exchange rate pass-through matter?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 134-150.
    17. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    18. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.
    19. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    20. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:11:p:475-:d:1503835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.