IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i10p437-d1488936.html
   My bibliography  Save this article

Mapping Risk–Return Linkages and Volatility Spillover in BRICS Stock Markets through the Lens of Linear and Non-Linear GARCH Models

Author

Listed:
  • Raj Kumar Singh

    (Department of Commerce, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India)

  • Yashvardhan Singh

    (Axtria Pvt. India Ltd., Pune 411057, Maharastra, India)

  • Satish Kumar

    (Department of Commerce, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India)

  • Ajay Kumar

    (GDC Tissa, Chamba 176316, Himachal Pradesh, India)

  • Waleed S. Alruwaili

    (Accounting, College of Business Administration, Northen Border University, Arar 91431, Saudi Arabia)

Abstract

This paper explores the influence of the risk–return relationship and volatility spillover on stock market returns of emerging economies, with a particular focus on the BRICS countries. This research is undertaken in a context where discussions on de-dollarization and the expansion of BRICS membership are gaining momentum, making it a novel and distinct exercise compared to prior studies. Utilizing econometric techniques to investigate daily market returns from 1 April 2008 to 31 March 2023, a period that witnessed major events like the global financial crisis, the COVID-19 pandemic, and the Russia–Ukraine conflict, linear and non-linear models like ARCH, GARCH, GARCH-M, EGARCH, and TGARCH, are employed to assess stock return volatility behaviour, assuming a Gaussian distribution of error terms. The diagnostic test confirms that the distribution is non-normal, stationary, and heteroscedastic. The key findings indicate a lack of the risk–return relationship across all BRICS stock markets, except for South Africa; a more pronounced effect of unpleasant news over pleasant news; a slow mean-reverting process in volatility; the EGARCH model is the best fit model as evidenced by a higher log likelihood and lower Akaike information criterion and Schwardz information criterion parameters; and finally, the presence of significant bidirectional and unidirectional spillover effects in the majority of instances. These findings are valuable for investors, regulators, and policymakers in enhancing returns and mitigating risk through portfolio diversification and informed decision making.

Suggested Citation

  • Raj Kumar Singh & Yashvardhan Singh & Satish Kumar & Ajay Kumar & Waleed S. Alruwaili, 2024. "Mapping Risk–Return Linkages and Volatility Spillover in BRICS Stock Markets through the Lens of Linear and Non-Linear GARCH Models," JRFM, MDPI, vol. 17(10), pages 1-26, September.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:437-:d:1488936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/10/437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/10/437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    2. Turgut Kısınbay, 2010. "Predictive ability of asymmetric volatility models at medium-term horizons," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3813-3829.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    2. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    3. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    4. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    5. Fuertes, Ana-Maria & Phylaktis, Kate & Yan, Cheng, 2019. "Uncovered equity “disparity” in emerging markets," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
    6. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    7. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    8. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    9. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    10. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    11. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    12. D Büttner & B. Hayo, 2012. "EMU-related news and financial markets in the Czech Republic, Hungary and Poland," Applied Economics, Taylor & Francis Journals, vol. 44(31), pages 4037-4053, November.
    13. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    15. Onour , Ibrahim A., 2021. "Modeling and assessing systematic risk in stock markets in major oil exporting countries," Economic Consultant, Roman I. Ostapenko, vol. 35(3), pages 18-29.
    16. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    17. P. Kearns & A.R. Pagan, 1993. "Australian Stock Market Volatility: 1875–1987," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 163-178, June.
    18. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    19. Shih Yung Wei & Jack J. W. Yang, 2011. "The Impact Of Short Sale Restrictions On Stock Volatility: Evidence From Taiwan," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 5(4), pages 89-98.
    20. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:437-:d:1488936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.