The Power of Numerical Indicators in Predicting Bankruptcy: A Systematic Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bruynseels, Liesbeth & Willekens, Marleen, 2012. "The effect of strategic and operating turnaround initiatives on audit reporting for distressed companies," Accounting, Organizations and Society, Elsevier, vol. 37(4), pages 223-241.
- Jakub Horak & Jaromir Vrbka & Petr Suler, 2020. "Support Vector Machine Methods and Artificial Neural Networks Used for the Development of Bankruptcy Prediction Models and their Comparison," JRFM, MDPI, vol. 13(3), pages 1-15, March.
- Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
- Daniela Bragoli & Camilla Ferretti & Piero Ganugi & Giovanni Marseguerra & Davide Mezzogori & Francesco Zammori, 2022. "Machine-learning models for bankruptcy prediction: do industrial variables matter?," Spatial Economic Analysis, Taylor & Francis Journals, vol. 17(2), pages 156-177, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
- Michalski, Lachlan & Low, Rand Kwong Yew, 2024. "Determinants of corporate credit ratings: Does ESG matter?," International Review of Financial Analysis, Elsevier, vol. 94(C).
- He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
- Stewart Jones & Nurul Alam, 2019. "A machine learning analysis of citation impact among selected Pacific Basin journals," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(4), pages 2509-2552, December.
- Zhiyong Li & Xinyi Hu & Ke Li & Fanyin Zhou & Feng Shen, 2020. "Inferring the outcomes of rejected loans: an application of semisupervised clustering," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 631-654, February.
- Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
- Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023.
"Do decreases in Distance-to-Default predict rating downgrades?,"
Economic Modelling, Elsevier, vol. 129(C).
- Nidhi Aggarwal & Manish K. Singh & Susan Thomas, 2022. "Do decreases in Distance-to-Default predict rating downgrades?," Working Papers 14, xKDR.
- Fahmida E. Moula & Chi Guotai & Mohammad Zoynul Abedin, 2017. "Credit default prediction modeling: an application of support vector machine," Risk Management, Palgrave Macmillan, vol. 19(2), pages 158-187, May.
- Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
- Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
- Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Carbone, Sante & Giuzio, Margherita & Kapadia, Sujit & Krämer, Johannes Sebastian & Nyholm, Ken & Vozian, Katia, 2021.
"The low-carbon transition, climate commitments and firm credit risk,"
Working Paper Series
2631, European Central Bank.
- Carbone, Sante & Giuzio, Margherita & Kapadia, Sujit & Krämer, Johannes Sebastian & Nyholm, Ken & Vozian, Katia, 2022. "The low-carbon transition, climate commitments and firm credit risk," Working Paper Series 409, Sveriges Riksbank (Central Bank of Sweden).
- Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
- Iotti, Mattia, 2023. "Financial evaluation and credit access of agricultural firms," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 25(2), October.
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
- Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023.
"Business model contributions to bank profit performance: A machine learning approach,"
Research in International Business and Finance, Elsevier, vol. 64(C).
- F. Bolivar & Miguel A. Duran & A. Lozano-Vivas, 2024. "Business Model Contributions to Bank Profit Performance: A Machine Learning Approach," Papers 2401.12334, arXiv.org.
- Tyler Pike & Horacio Sapriza & Tom Zimmermann, 2019. "Bottom-up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults using Machine Learning," Finance and Economics Discussion Series 2019-070, Board of Governors of the Federal Reserve System (U.S.).
More about this item
Keywords
bankruptcy; early warning; failure prediction; financial distress; prediction; numerical indicators; statistical analysis; PRISMA;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:433-:d:1488076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.