Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
- Bonfim, Diana, 2009.
"Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics,"
Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
- Diana Bonfim, 2007. "Credit Risk Drivers: Evaluating the Contribution of Firm Level Information and of Macroeconomic Dynamics," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Diana Bonfim, 2007. "Credit Risk Drivers: Evaluating the Contribution of Firm Level Information and of Macroeconomic Dynamics," Working Papers w200707, Banco de Portugal, Economics and Research Department.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Balcaen, Sofie & Ooghe, Hubert, 2006.
"35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems,"
The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
- S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Petter Eilif de Lange & Borger Melsom & Christian Bakke Vennerød & Sjur Westgaard, 2022. "Explainable AI for Credit Assessment in Banks," JRFM, MDPI, vol. 15(12), pages 1-23, November.
- Stewart Jones & David Johnstone & Roy Wilson, 2017. "Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 44(1-2), pages 3-34, January.
- repec:eme:mfppss:eb013696 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
- Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
- Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
- du Jardin, Philippe & Séverin, Eric, 2012.
"Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time,"
European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
- du Jardin, Philippe & Severin, Eric, 2011. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," MPRA Paper 39935, University Library of Munich, Germany, revised 03 Apr 2012.
- Alberto Tron & Maurizio Dallocchio & Salvatore Ferri & Federico Colantoni, 2023. "Corporate governance and financial distress: lessons learned from an unconventional approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 425-456, June.
- Chien-Min Kang & Ming-Chieh Wang & Lin Lin, 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions," IJFS, MDPI, vol. 10(2), pages 1-25, April.
- Jones, Stewart & Wang, Tim, 2019. "Predicting private company failure: A multi-class analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 161-188.
- Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
- Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Nijskens, Rob & Mokas, Dimitris, 2019. "Credit Risk in Commercial Real Estate Bank Loans : The Role of Idiosyncratic versus Macro-Economic Factors," Other publications TiSEM ea4f2f0e-dc50-4987-91d3-6, Tilburg University, School of Economics and Management.
- Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
- Paramonovs Sergejs & Ijevleva Ksenija, 2015. "The Role of Marketing Tools in the Improvement of Consumers Financial Literacy," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 40-45, December.
More about this item
Keywords
financial distress prediction; credit risk; machine learning; explainable AI; Nordics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:432-:d:1487547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.