RCML: A Novel Algorithm for Regressing Price Movement during Commodity Futures Stress Testing Based on Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pierre-Antoine Mudry & Florentina Paraschiv, 2016. "Stress-Testing for Portfolios of Commodity Futures with Extreme Value Theory and Copula Functions," Lecture Notes in Economics and Mathematical Systems, in: Raquel J. Fonseca & Gerhard-Wilhelm Weber & João Telhada (ed.), Computational Management Science, edition 1, pages 17-22, Springer.
- Gogas, Periklis & Papadimitriou, Theophilos & Agrapetidou, Anna, 2018. "Forecasting bank failures and stress testing: A machine learning approach," International Journal of Forecasting, Elsevier, vol. 34(3), pages 440-455.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
- Polyzos, Stathis & Samitas, Aristeidis & Katsaiti, Marina-Selini, 2020. "Who is unhappy for Brexit? A machine-learning, agent-based study on financial instability," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
- Anton Gerunov, 2023. "Modern Approaches To Forecasting Firm Default Rates Over The Short To Medium Term: An Application To A Panel Of Polish Companies," Yearbook of the Faculty of Economics and Business Administration, Sofia University, Faculty of Economics and Business Administration, Sofia University St Kliment Ohridski - Bulgaria, vol. 22(1), pages 5-15, October.
- Cullen F. Goenner, 2020. "Uncertain times and early predictions of bank failure," The Financial Review, Eastern Finance Association, vol. 55(4), pages 583-601, November.
- Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021.
"Comparing minds and machines: implications for financial stability,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
- Buckmann, Marcus & Haldane, Andy & Hüser, Anne-Caroline, 2021. "Comparing minds and machines: implications for financial stability," Bank of England working papers 937, Bank of England.
- Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
- Veganzones, David & Séverin, Eric & Chlibi, Souhir, 2023. "Influence of earnings management on forecasting corporate failure," International Journal of Forecasting, Elsevier, vol. 39(1), pages 123-143.
- Suss, Joel & Treitel, Henry, 2019. "Predicting bank distress in the UK with machine learning," Bank of England working papers 831, Bank of England.
- Andrés Giovanni Camacho Ardila & Federico Hernández Álvarez & Luis Ignacio Román de la Sancha, 2023. "Ciclos en el Sector Bancario Mexicano: un Índice Coincidente (CP1G7) vía ACP," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(4), pages 1-25, Octubre -.
- Małgorzata Iwanicz-Drozdowska & Krzysztof Jackowicz & Maciej Karczmarczyk, 2021. "“The Crooked Smile of TCR†: Banks’ Solvency and Restructuring Costs in the European Banking Industry," SAGE Open, , vol. 11(3), pages 21582440211, September.
- Kea BARET & Theophilos PAPADIMITRIOU, 2019. "On the Stability and Growth Pact compliance: what is predictable with machine learning?," Working Papers of BETA 2019-48, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
- Katsafados, Apostolos G. & Androutsopoulos, Ion & Chalkidis, Ilias & Fergadiotis, Manos & Leledakis, George N. & Pyrgiotakis, Emmanouil G., 2020. "Textual Information and IPO Underpricing: A Machine Learning Approach," MPRA Paper 103813, University Library of Munich, Germany.
- Periklis Gogas & Theophilos Papadimitriou & Maria-Artemis Matthaiou, 2022. "Supervision of Banking Networks Using the Multivariate Threshold-Minimum Dominating Set (mT-MDS)," JRFM, MDPI, vol. 15(6), pages 1-13, June.
- Kristóf, Tamás & Virág, Miklós, 2022. "EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks," Research in International Business and Finance, Elsevier, vol. 61(C).
- Wang, Gang-Jin & Chen, Yan & Zhu, You & Xie, Chi, 2024. "Systemic risk prediction using machine learning: Does network connectedness help prediction?," International Review of Financial Analysis, Elsevier, vol. 93(C).
- Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
- Kea BARET, 2021. "Fiscal rules’ compliance and Social Welfare," Working Papers of BETA 2021-38, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Samitas, Aristeidis & Kampouris, Elias & Kenourgios, Dimitris, 2020. "Machine learning as an early warning system to predict financial crisis," International Review of Financial Analysis, Elsevier, vol. 71(C).
More about this item
Keywords
stress testing; multi-view information; machine learning; historical scenario simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:6:p:285-:d:1155166. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.