IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i10p450-d1262456.html
   My bibliography  Save this article

Derivative of Reduced Cumulative Distribution Function and Applications

Author

Listed:
  • Kevin Maritato

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
    Department of Mathematics, Computer and Information Science, SUNY Old Westbury, Old Westbury, NY 11568, USA)

  • Stan Uryasev

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA)

Abstract

The reduced cumulative distribution function (rCDF) is the maximal lower bound for the cumulative distribution function (CDF). It is equivalent to the inverse of the conditional value at risk (CVaR), or one minus the buffered probability of exceedance (bPOE). This paper introduces the reduced probability density function (rPDF), the derivative of rCDF. We first explore the relation between rCDF and other risk measures. Then we describe three means of calculating rPDF for a distribution, depending on what is known about the distribution. For functions with a closed-form formula for bPOE, we derive closed-form formulae for rPDF. Further, we describe formulae for rPDF based on a numerical bPOE when there is a closed-form formula for CVaR but no closed-form formula for bPOE. Finally, we give a method for numerically calculating rPDF for an empirical distribution, and compare the results with other methods for known distributions. We conducted a case study and used rPDF for sensitivity analysis and parameter estimation with a method similar to the maximum likelihood method.

Suggested Citation

  • Kevin Maritato & Stan Uryasev, 2023. "Derivative of Reduced Cumulative Distribution Function and Applications," JRFM, MDPI, vol. 16(10), pages 1-24, October.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:10:p:450-:d:1262456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/10/450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/10/450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    2. Mulvey, John M. & Erkan, Hafize G., 2006. "Applying CVaR for decentralized risk management of financial companies," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 627-644, February.
    3. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2018. "Calculating CVaR and bPOE for Common Probability Distributions With Application to Portfolio Optimization and Density Estimation," Papers 1811.11301, arXiv.org, revised Feb 2019.
    4. Andreas Krause, 2003. "Exploring the Limitations of Value at Risk: How Good Is It in Practice?," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 4(2), pages 19-28, January.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    2. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.
    3. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    4. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    5. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    6. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    7. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    8. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    9. Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    10. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    11. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    12. Ali Genç, 2013. "Moments of truncated normal/independent distributions," Statistical Papers, Springer, vol. 54(3), pages 741-764, August.
    13. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    14. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    15. Deepak K. Jadhav & Ramanathan Thekke Variyam, 2023. "Modified Expected Shortfall: a Coherent Risk Measure for Elliptical Family of Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 234-256, May.
    16. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    17. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    18. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    19. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    20. Tsanakas, Andreas, 2008. "Risk measurement in the presence of background risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 520-528, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:10:p:450-:d:1262456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.