IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2022i1p2-d1009542.html
   My bibliography  Save this article

Asymmetric Information Flow between Exchange Rate, Oil, and Gold: New Evidence from Transfer Entropy Approach

Author

Listed:
  • Moinak Maiti

    (Independent Researcher, Kolkata 711112, India)

  • Parthajit Kayal

    (Madras School of Economics (MSE), Gandhi Mandapam Road, Kottur, Chennai 600025, India)

Abstract

The present study used transfer entropy and effective transfer entropy to examine the asymmetric information flow between exchange rates, oil, and gold. The dataset is composed of daily data covering the period of 1 January 2018 to 31 December 2021. Further, the dataset is bifurcated for analysis for before and during COVID. The bidirectional information flow is observed between EUR/USD and Oil for the whole study period unlike before COVID. However, during COVID, there was a unidirectional information flow from Oil→EUR/USD. The study finds a significant unidirectional information flow from Gold→EUR/USD. The study estimates also indicate that before COVID, the direction of information flow was from Oil→Gold. However, the direction of information flow reversed during COVID from Gold→Oil. Overall, the direction of information flow among these three variables is asymmetric. The highest transfer entropy was observed for Gold→EUR/USD among all the pairs under consideration.

Suggested Citation

  • Moinak Maiti & Parthajit Kayal, 2022. "Asymmetric Information Flow between Exchange Rate, Oil, and Gold: New Evidence from Transfer Entropy Approach," JRFM, MDPI, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2022:i:1:p:2-:d:1009542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jain, Anshul & Biswal, P.C., 2016. "Dynamic linkages among oil price, gold price, exchange rate, and stock market in India," Resources Policy, Elsevier, vol. 49(C), pages 179-185.
    2. Dimpfl Thomas & Peter Franziska Julia, 2013. "Using transfer entropy to measure information flows between financial markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 85-102, February.
    3. Ali, Fahad & Jiang, Yuexiang & Sensoy, Ahmet, 2021. "Downside risk in Dow Jones Islamic equity indices: Precious metals and portfolio diversification before and after the COVID-19 bear market," Research in International Business and Finance, Elsevier, vol. 58(C).
    4. Li, Jianping & Li, Jingyu & Zhu, Xiaoqian & Yao, Yinhong & Casu, Barbara, 2020. "Risk spillovers between FinTech and traditional financial institutions: Evidence from the U.S," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Shang, Jin & Hamori, Shigeyuki, 2021. "Do crude oil prices and the sentiment index influence foreign exchange rates differently in oil-importing and oil-exporting countries? A dynamic connectedness analysis," Resources Policy, Elsevier, vol. 74(C).
    6. Lahmiri, Salim & Bekiros, Stelios, 2020. "Renyi entropy and mutual information measurement of market expectations and investor fear during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal & Rakesh Nigam, 2021. "Information Theoretic Ranking of Extreme Value Returns," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 1-21, March.
    8. Zhang, Zitao & Qin, Yun, 2022. "Study on the nonlinear interactions among the international oil price, the RMB exchange rate and China's gold price," Resources Policy, Elsevier, vol. 77(C).
    9. Ahmad Monir Abdullah & Maizatulakma Abdullah & Romlah Jaafar, 2022. "The Dynamic Volatilities and Correlations between German Stock Market Indices and Commodities: Evidence from Wavelet and MGARCH-DCC Approaches," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 12(8), pages 731-750.
    10. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    11. Parthajit Kayal & Sumanjay Dutta & Vipul Khandelwal, "undated". "Information Theoretic Ranking of Extreme Value Returns," Working Papers 2020-195, Madras School of Economics,Chennai,India.
    12. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    13. Li, Rong & Li, Sufang & Yuan, Di & Zhu, Huiming, 2021. "Investor attention and cryptocurrency: Evidence from wavelet-based quantile Granger causality analysis," Research in International Business and Finance, Elsevier, vol. 56(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parthajit Kayal & Moinak Maiti, 2023. "Examining the asymmetric information flow between pairs of gold, silver, and oil: a transfer entropy approach," SN Business & Economics, Springer, vol. 3(10), pages 1-22, October.
    2. Afshan, Sahar & Leong, Ken Yien & Najmi, Arsalan & Razi, Ummara & Lelchumanan, Bawani & Cheong, Calvin Wing Hoh, 2024. "Fintech advancements for financial resilience: Analysing exchange rates and digital currencies during oil and financial risk," Resources Policy, Elsevier, vol. 88(C).
    3. Ameet Kumar Banerjee & HK Pradhan, 2024. "Did Precious Metals Serve as Hedge and Safe-haven Alternatives to Equity During the COVID-19 Pandemic: New Insights Using a Copula-based Approach," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 23(4), pages 399-423, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lu & Ruan, Hang & Hong, Yanran & Luo, Keyu, 2023. "Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Parthajit Kayal & Moinak Maiti, 2023. "Examining the asymmetric information flow between pairs of gold, silver, and oil: a transfer entropy approach," SN Business & Economics, Springer, vol. 3(10), pages 1-22, October.
    3. Ohikhuare, Obaika M., 2023. "How geopolitical risk drives spillover interconnectedness between crude oil and exchange rate markets: Evidence from the Russia-Ukraine war," Resources Policy, Elsevier, vol. 86(PB).
    4. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    5. Dutta, Anupam & Bouri, Elie & Roubaud, David, 2019. "Nonlinear relationships amongst the implied volatilities of crude oil and precious metals," Resources Policy, Elsevier, vol. 61(C), pages 473-478.
    6. Assaf, Ata & Mokni, Khaled & Youssef, Manel, 2023. "COVID-19 and information flow between cryptocurrencies, and conventional financial assets," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 73-81.
    7. Mokni, Khaled & Mansouri, Faysal, 2017. "Conditional dependence between international stock markets: A long memory GARCH-copula model approach," Journal of Multinational Financial Management, Elsevier, vol. 42, pages 116-131.
    8. Muhammad Shafiullah & Sajid M. Chaudhry & Muhammad Shahbaz & Juan C. Reboredo, 2021. "Quantile causality and dependence between crude oil and precious metal prices," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6264-6280, October.
    9. Soni, Rajat Kumar & Nandan, Tanuj, 2022. "Modeling Covid-19 contagious effect between asset markets and commodity futures in India," Resources Policy, Elsevier, vol. 79(C).
    10. İrfan Civcir & Uğur Akkoç, 2021. "Dynamic volatility linkages and hedging between commodities and sectoral stock returns in Turkey: Evidence from SVAR‐cDCC‐GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1978-1992, April.
    11. Yingying Xu & Donald Lien, 2020. "Optimal futures hedging for energy commodities: An application of the GAS model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1090-1108, July.
    12. Wu, Tao & An, Feng & Gao, Xiangyun & Wang, Ze, 2023. "Hidden causality between oil prices and exchange rates," Resources Policy, Elsevier, vol. 82(C).
    13. Das, Sudeepa & Sahu, Tirath Prasad & Janghel, Rekh Ram, 2022. "Oil and gold price prediction using optimized fuzzy inference system based extreme learning machine," Resources Policy, Elsevier, vol. 79(C).
    14. Wen, Danyan & Liu, Li & Ma, Chaoqun & Wang, Yudong, 2020. "Extreme risk spillovers between crude oil prices and the U.S. exchange rate: Evidence from oil-exporting and oil-importing countries," Energy, Elsevier, vol. 212(C).
    15. Cheng, Sheng & Han, Lingyu & Cao, Yan & Jiang, Qisheng & Liang, Ruibin, 2022. "Gold-oil dynamic relationship and the asymmetric role of geopolitical risks: Evidence from Bayesian pdBEKK-GARCH with regime switching," Resources Policy, Elsevier, vol. 78(C).
    16. Chatziantoniou, Ioannis & Elsayed, Ahmed H. & Gabauer, David & Gozgor, Giray, 2023. "Oil price shocks and exchange rate dynamics: Evidence from decomposed and partial connectedness measures for oil importing and exporting economies," Energy Economics, Elsevier, vol. 120(C).
    17. Zhang, Zitao & Qin, Yun, 2022. "Study on the nonlinear interactions among the international oil price, the RMB exchange rate and China's gold price," Resources Policy, Elsevier, vol. 77(C).
    18. Imran, Zulfiqar Ali & Ahad, Muhammad, 2021. "Safe Haven or Hedge: Diversification Abilities of Asset Classes in Pakistan," MPRA Paper 107613, University Library of Munich, Germany, revised 02 May 2021.
    19. Raza Syed Ali & Shah Nida & Ali Muhammad & Shahbaz Muhammad, 2021. "Do Exchange Rates Fluctuations Influence Gold Price in G7 Countries? New Insights from a Nonparametric Causality-in-Quantiles Test," Zagreb International Review of Economics and Business, Sciendo, vol. 24(2), pages 37-57.
    20. Tiwari, Aviral Kumar & Mishra, Bibhuti Ranjan & Solarin, Sakiru Adebola, 2021. "Analysing the spillovers between crude oil prices, stock prices and metal prices: The importance of frequency domain in USA," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2022:i:1:p:2-:d:1009542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.