IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i8p346-d880717.html
   My bibliography  Save this article

Assessing the Risk Characteristics of the Cryptocurrency Market: A GARCH-EVT-Copula Approach

Author

Listed:
  • Pascal Bruhn

    (International School of Finance (ISF), Nuertingen-Geislingen University, Sigmaringer Straße 25, 72622 Nürtingen, Germany)

  • Dietmar Ernst

    (International School of Finance (ISF), Nuertingen-Geislingen University, Sigmaringer Straße 25, 72622 Nürtingen, Germany)

Abstract

The cryptocurrency market offers significant investment opportunities but also entails higher risks as compared to other asset classes. This article aims to analyse the financial risk characteristics of individual cryptocurrencies and of a broad cryptocurrency market portfolio. We construct a portfolio comprising the 20 largest cryptocurrencies, which cover 82.1% of the total cryptocurrency market. The returns are examined for extreme tail risks by the application of Extreme Value Theory. We utilise the GARCH-EVT approach in combination with a novel algorithm to automatically determine the optimal threshold to model the tail distribution. Furthermore, we aggregate the individual market risks with a t-Student Copula to investigate possible diversification effects on a portfolio level. The empirical analysis indicates that all examined cryptocurrencies show high volatility in their price movements, whereby Bitcoin acts as the most stable cryptocurrency. All return distributions are heavy-tailed and subject to extreme tail risks. We find strong, positive intra-market correlations, in particular with the two largest cryptocurrencies Bitcoin and Ethereum. No diversification effect can be achieved by aggregating market risks. On the contrary, a negligibly lower expected return and higher joint extreme returns can be observed. From this analysis, it can be concluded that investments in individual cryptocurrencies as well as in a portfolio show extreme risks of losses. From the investor’s point of view, a possible strategy of risk reduction through portfolio formation within cryptocurrencies is only promising to a limited extent and does not offer a satisfactory solution to significantly reduce the risk within this asset class.

Suggested Citation

  • Pascal Bruhn & Dietmar Ernst, 2022. "Assessing the Risk Characteristics of the Cryptocurrency Market: A GARCH-EVT-Copula Approach," JRFM, MDPI, vol. 15(8), pages 1-28, August.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:8:p:346-:d:880717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/8/346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/8/346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
    2. Simon Trimborn & Mingyang Li & Wolfgang Karl Härdle, 2020. "Investing with Cryptocurrencies—a Liquidity Constrained Investment Approach," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 280-306.
    3. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "On the Return Distributions of a Basket of Cryptocurrencies and Subsequent Implications," Papers 2105.12334, arXiv.org.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    6. Tim Schmitz & Ingo Hoffmann, 2020. "Re-evaluating cryptocurrencies' contribution to portfolio diversification -- A portfolio analysis with special focus on German investors," Papers 2006.06237, arXiv.org, revised Aug 2020.
    7. Anupam Dutta & Elie Bouri, 2022. "Outliers and Time-Varying Jumps in the Cryptocurrency Markets," JRFM, MDPI, vol. 15(3), pages 1-7, March.
    8. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    9. Acereda, Beatriz & Leon, Angel & Mora, Juan, 2020. "Estimating the expected shortfall of cryptocurrencies: An evaluation based on backtesting," Finance Research Letters, Elsevier, vol. 33(C).
    10. Inzamam Ul Haq & Apichit Maneengam & Supat Chupradit & Wanich Suksatan & Chunhui Huo, 2021. "Economic Policy Uncertainty and Cryptocurrency Market as a Risk Management Avenue: A Systematic Review," Risks, MDPI, vol. 9(9), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimi, Parinaz & Mirzaee Ghazani, Majid & Ebrahimi, Seyed Babak, 2023. "Analyzing spillover effects of selected cryptocurrencies on gold and brent crude oil under COVID-19 pandemic: Evidence from GJR-GARCH and EVT copula methods," Resources Policy, Elsevier, vol. 85(PB).
    2. Dietmar Ernst & Werner Gleißner, 2022. "Paradigm Shift in Finance: The Transformation of the Theory from Perfect to Imperfect Capital Markets Using the Example of Company Valuation," JRFM, MDPI, vol. 15(9), pages 1-13, September.
    3. Dietmar Ernst, 2023. "Risk Measures in Simulation-Based Business Valuation: Classification of Risk Measures in Risk Axiom Systems and Application in Valuation Practice," Risks, MDPI, vol. 11(1), pages 1-14, January.
    4. Paula Sarabando & Roge rio Matias & Pedro Vasconcelos & Tiago Miguel, 2023. "Financial literacy of Portuguese undergraduate students in polytechnics: does the area of the course influence financial literacy?," Journal of Economic Analysis, Anser Press, vol. 2(2), pages 96-113, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    2. Chen, Yan & Zhang, Lei & Bouri, Elie, 2024. "Can a self-exciting jump structure better capture the jump behavior of cryptocurrencies? A comparative analysis with the S&P 500," Research in International Business and Finance, Elsevier, vol. 69(C).
    3. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    4. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "On the Return Distributions of a Basket of Cryptocurrencies and Subsequent Implications," Papers 2105.12334, arXiv.org.
    5. Fahad Mostafa & Pritam Saha & Mohammad Rafiqul Islam & Nguyet Nguyen, 2021. "GJR-GARCH Volatility Modeling under NIG and ANN for Predicting Top Cryptocurrencies," JRFM, MDPI, vol. 14(9), pages 1-22, September.
    6. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Angerer, Martin & Hoffmann, Christian Hugo & Neitzert, Florian & Kraus, Sascha, 2021. "Objective and subjective risks of investing into cryptocurrencies," Finance Research Letters, Elsevier, vol. 40(C).
    8. Moreno, David & Antoli, Marcos & Quintana, David, 2022. "Benefits of investing in cryptocurrencies when liquidity is a factor," Research in International Business and Finance, Elsevier, vol. 63(C).
    9. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    10. Nguyen, Linh Hoang & Chevapatrakul, Thanaset & Yao, Kai, 2020. "Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 333-355.
    11. Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.
    12. Bruno Ferreira Frascaroli, 2020. "Bitcoin's innovative aspects, return volatility and uncertainty shocks," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 7(3), pages 224-245.
    13. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    14. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    15. Liu, Wei & Semeyutin, Artur & Lau, Chi Keung Marco & Gozgor, Giray, 2020. "Forecasting Value-at-Risk of Cryptocurrencies with RiskMetrics type models," Research in International Business and Finance, Elsevier, vol. 54(C).
    16. Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    17. Day Yang Liu & Ming Chen Chun & Yi Kai Su, 2021. "The impacts of Covid-19 pandemic on the smooth transition dynamics of stock market index volatilities for the Four Asian Tigers and Japan," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 183-194, June.
    18. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    19. Naeem, Muhammad Abubakr & Lucey, Brian M. & Karim, Sitara & Ghafoor, Abdul, 2022. "Do financial volatilities mitigate the risk of cryptocurrency indexes?," Finance Research Letters, Elsevier, vol. 50(C).
    20. Damian Zięba, 2019. "Lévy processes on the cryptocurrency market," Working Papers 2019-15, Faculty of Economic Sciences, University of Warsaw.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:8:p:346-:d:880717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.