IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i11p516-d965130.html
   My bibliography  Save this article

Blockchain Platforms in Energy Markets—A Critical Assessment

Author

Listed:
  • Christoph Burger

    (ESMT Berlin, Schlossplatz 1, 10178 Berlin, Germany)

  • Jens Weinmann

    (ESMT Berlin, Schlossplatz 1, 10178 Berlin, Germany)

Abstract

Compared to other applications of distributed ledger technologies, for example, in decentralized finance, non-fungible tokens, and logistics, Blockchain applications in the energy industry have not found widespread dissemination and fell short of market expectations during the Blockchain hype in the late 2010s. In semi-structured qualitative interviews with leading providers in the energy industry, conducted from 2019 to 2021, hurdles in energy applications are compared with a control group of additional interviews with representatives of companies operating in IT and FinTech. The analysis uses a framework covering technical feasibility, desirability, and economic viability, as well as the role of regulatory frameworks. The interviews reveal that the first Blockchain applications suffered from a combination of technological constraints and inter-platform competition. Due to the permissionless configuration of the early energy Blockchains, they were slow in terms of transaction speed compared to existing platforms and prices per transaction were high, in addition to high degrees of complexity related to requirements from both critical-infrastructure systems and financial market regulation. The analysis further points to the slow adoption of Blockchain applications in the energy sector being related to business models rather focusing on products and platforms as well as on transactional rather than procedural use cases, with a high degree of standardization of the offering and low levels of inclusiveness concerning processes. The move from transaction platforms to innovation platforms and the emergence of Blockchain as a service provider—plus technical advances with regards to high-frequency transactions combined with the increasing importance of use cases, such as proof of origin for fuels or e-charging—may induce a shift from pilot applications to commercialization within the larger innovation ecosystem. While the involvement of Blockchain solutions in energy markets increases with pilot projects and with this, the acceptance of players and stakeholders in the energy ecosystem, a big hurdle for innovation remains the regulation of energy markets to allow for peer-to-peer trading, a usage-driven distribution of network costs, and bottom-up pricing markets.

Suggested Citation

  • Christoph Burger & Jens Weinmann, 2022. "Blockchain Platforms in Energy Markets—A Critical Assessment," JRFM, MDPI, vol. 15(11), pages 1-18, November.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:11:p:516-:d:965130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/11/516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/11/516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    2. Tamás Katona, 2021. "Decentralized Finance - The Possibilities of a Blockchain "Money Lego" System," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 20(1), pages 74-102.
    3. Chen, Yan & Bellavitis, Cristiano, 2020. "Blockchain disruption and decentralized finance: The rise of decentralized business models," Journal of Business Venturing Insights, Elsevier, vol. 13(C).
    4. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    5. Rolf van Wegberg & Jan-Jaap Oerlemans & Oskar van Deventer, 2018. "Bitcoin money laundering: mixed results?," Journal of Financial Crime, Emerald Group Publishing Limited, vol. 25(2), pages 419-435, May.
    6. Asma Khatoon & Piyush Verma & Jo Southernwood & Beth Massey & Peter Corcoran, 2019. "Blockchain in Energy Efficiency: Potential Applications and Benefits," Energies, MDPI, vol. 12(17), pages 1-14, August.
    7. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    3. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    4. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    5. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    6. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    7. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Sevic, Aleksandar & González-López, Isaac, 2022. "A preliminary assessment of the performance of DeFi cryptocurrencies in relation to other financial assets, volatility, and user-generated content," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    8. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Singh, Kamini & Gadh, Rajit & Singh, Anoop & Lal Dewangan, Chaman, 2022. "Design of an optimal P2P energy trading market model using bilevel stochastic optimization," Applied Energy, Elsevier, vol. 328(C).
    10. Xu, Shuang & Zhao, Yong & Li, Yuanzheng & Zhou, Yue, 2021. "An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid," Applied Energy, Elsevier, vol. 298(C).
    11. Seyedhossein, Seyed Saeed & Moeini-Aghtaie, Moein, 2022. "Risk management framework of peer-to-peer electricity markets," Energy, Elsevier, vol. 261(PB).
    12. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    13. Liu, Jicheng & Lu, Yunyuan, 2023. "A task matching model of photovoltaic storage system under the energy blockchain environment - based on GA-CLOUD-GS algorithm," Energy, Elsevier, vol. 283(C).
    14. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    15. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    16. Christian Zeiß & Myriam Schaschek & Lisa Straub & Christoph Tomitza & Axel Winkelmann, 2024. "Re-intermediation of the crypto asset ecosystem by banks: An empirical study on acceptance drivers among the populace," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-24, December.
    17. Florentina c{S}oiman & Guillaume Dumas & Sonia Jimenez-Garces, 2022. "The return of (I)DeFiX," Papers 2204.00251, arXiv.org.
    18. Vincent Gramlich & Tobias Guggenberger & Marc Principato & Benjamin Schellinger & Nils Urbach, 2023. "A multivocal literature review of decentralized finance: Current knowledge and future research avenues," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-37, December.
    19. Wu, Yiqian & Zhang, Xuan & Sun, Hongbin, 2021. "A multi-time-scale autonomous energy trading framework within distribution networks based on blockchain," Applied Energy, Elsevier, vol. 287(C).
    20. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:11:p:516-:d:965130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.