IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i5p201-d548028.html
   My bibliography  Save this article

Portfolio Optimization Constrained by Performance Attribution

Author

Listed:
  • Yuan Hu

    (Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA)

  • W. Brent Lindquist

    (Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA)

  • Svetlozar T. Rachev

    (Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA)

Abstract

This paper investigates performance attribution measures as a basis for constraining portfolio optimization. We employ optimizations that minimize conditional value-at-risk and investigate two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights. The test portfolio consists of stocks from the Dow Jones Industrial Average index. Values for the performance attributes are established relative to two benchmarks, equi-weighted and price-weighted portfolios of the same stocks. Performance of the optimized portfolios is judged using comparisons of cumulative price and the risk-measures: maximum drawdown, Sharpe ratio, Sortino–Satchell ratio and Rachev ratio. The results suggest that achieving SE performance thresholds requires larger turnover values than that required for achieving comparable AA thresholds. The results also suggest a positive role in price and risk-measure performance for the imposition of constraints on AA and SE.

Suggested Citation

  • Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev, 2021. "Portfolio Optimization Constrained by Performance Attribution," JRFM, MDPI, vol. 14(5), pages 1-12, May.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:5:p:201-:d:548028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/5/201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/5/201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlozar T. Rachev & R. Douglas Martin & Borjana Racheva & Stoyan Stoyanov, 2009. "Stable ETL Optimal Portfolios and Extreme Risk Management," Contributions to Economics, in: Georg Bol & Svetlozar T. Rachev & Reinhold Würth (ed.), Risk Assessment, pages 235-262, Springer.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    2. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    3. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    4. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    5. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    6. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    7. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    8. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    9. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    10. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    11. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    12. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    13. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    14. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    15. Tee, Kai-Hong, 2009. "The effect of downside risk reduction on UK equity portfolios included with Managed Futures Funds," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 303-310, December.
    16. Muñoz, José Ignacio & Sánchez de la Nieta, Agustín A. & Contreras, Javier & Bernal-Agustín, José L., 2009. "Optimal investment portfolio in renewable energy: The Spanish case," Energy Policy, Elsevier, vol. 37(12), pages 5273-5284, December.
    17. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    18. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    19. Gourieroux, C. & Monfort, A., 2005. "The econometrics of efficient portfolios," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 1-41, January.
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:5:p:201-:d:548028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.