IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i10p498-d658733.html
   My bibliography  Save this article

An Assessment of the Efficiency of Canadian Power Generation Companies with Bootstrap DEA

Author

Listed:
  • Mohamed Dia

    (Research Group in Operations, Analytics and Decision Sciences (RGinOADS), School of Business Administration, Faculty of Management, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada)

  • Shashi K. Shahi

    (Research Group in Operations, Analytics and Decision Sciences (RGinOADS), School of Business Administration, Faculty of Management, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada)

  • Luckny Zéphyr

    (Research Group in Operations, Analytics and Decision Sciences (RGinOADS), School of Business Administration, Faculty of Management, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada)

Abstract

Power generation companies play an important role in the Canadian economy, as most of the economic activities in the manufacturing and service sectors are powered by electricity. The significance of the Canadian power generation industry shows that efficiency analysis is essential for efficiently managing power generation and distribution in Canada. However, there have been few attempts to study the relative efficiencies of the Canadian power generation companies. This study fills in this gap by assessing the overall technical, managerial, and scale efficiencies of a sample of Canadian power generation companies via the non-parametric bootstrap DEA methodology, with firm-level annual inputs and outputs data over an 18-year horizon. The results of our investigation indicate low levels of overall technical and managerial efficiencies but relatively high levels of scale efficiencies of the Canadian power generation companies over the entire study period. We also found that the 2007–2009 financial crisis impacted the relative performance of the Canadian power generation companies. Our results also allowed us to identify the benchmark power generation companies for each type of efficiency that the inefficient companies should target toward improving their efficiency.

Suggested Citation

  • Mohamed Dia & Shashi K. Shahi & Luckny Zéphyr, 2021. "An Assessment of the Efficiency of Canadian Power Generation Companies with Bootstrap DEA," JRFM, MDPI, vol. 14(10), pages 1-27, October.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:498-:d:658733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/10/498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/10/498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thiam Hee Ng, . "Bond Financing for Renewable Energy in Asia," Chapters, in: Shigeru Kimura & Youngho Chang & Yanfei Li (ed.), Financing Renewable Energy Development in East Asia Summit Countries A Primer of Effective Policy Instruments, chapter 11, pages 321-342, Economic Research Institute for ASEAN and East Asia (ERIA).
    2. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    3. Wang, Bing & Nistor, Ioan & Murty, Tad & Wei, Yi-Ming, 2014. "Efficiency assessment of hydroelectric power plants in Canada: A multi criteria decision making approach," Energy Economics, Elsevier, vol. 46(C), pages 112-121.
    4. Zhang, Shanshan & Lundgren, Tommy & Zhou, Wenchao, 2016. "Energy efficiency in Swedish industry," Energy Economics, Elsevier, vol. 55(C), pages 42-51.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Xiaohuan Lyu & Anna Shi, 2018. "Research on the Renewable Energy Industry Financing Efficiency Assessment and Mode Selection," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    7. Ng, Thiam Hee & Tao, Jacqueline Yujia, 2016. "Bond financing for renewable energy in Asia," Energy Policy, Elsevier, vol. 95(C), pages 509-517.
    8. Mirnezami, Seyed Reza, 2014. "Electricity inequality in Canada: Should pricing reforms eliminate subsidies to encourage efficient usage?," Utilities Policy, Elsevier, vol. 31(C), pages 36-43.
    9. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    10. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    11. Yi-Ming Wei & Hua Liao (ed.), 2016. "Energy Economics: Energy Efficiency in China," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b5, december.
    12. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    13. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    14. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhishuo Zhang & Yao Xiao & Huayong Niu, 2022. "DEA and Machine Learning for Performance Prediction," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    2. Jose Erazo & Guillermo Barragan & Modesto Pérez-Sánchez & Clotario Tapia & Marco Calahorrano & Victor Hidalgo, 2022. "Geometrical Optimization of Pelton Turbine Buckets for Enhancing Overall Efficiency by Using a Parametric Model—A Case Study: Hydroelectric Power Plant “Illuchi N2” from Ecuador," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Cui, Yuan & Pan, Hao & Huang, Yi-Di & Yang, Guo-liang, 2024. "How can sociological theories provide legitimacy to eco-efficiency evaluations? Embark on a journey toward understanding," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    3. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    4. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    5. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    6. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    7. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    8. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    9. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    10. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    11. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    12. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    13. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    14. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    15. Qingyou Yan & Xu Wang & Tomas Baležentis & Dalia Streimikiene, 2018. "Energy–economy–environmental (3E) performance of Chinese regions based on the data envelopment analysis model with mixed assumptions on disposability," Energy & Environment, , vol. 29(5), pages 664-684, August.
    16. Ning Zhang & Jong-Dae Kim, 2014. "Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    17. Falavigna, G. & Ippoliti, R., 2020. "The socio-economic planning of a community nurses programme in mountain areas: A Directional Distance Function approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    19. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    20. Apostolos Christopoulos & Ioannis Dokas & Sofia Katsimardou & Eleftherios Spyromitros, 2022. "The Malmquist Productivity measure for UK-listed firms in the aftermath of the global financial crisis," Operational Research, Springer, vol. 22(2), pages 1617-1634, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:498-:d:658733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.