IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i10p493-d657044.html
   My bibliography  Save this article

Volatility Spillovers among Cryptocurrencies

Author

Listed:
  • Lee A. Smales

    (UWA Business School, University of Western Australia, Perth, WA 6009, Australia)

Abstract

The cryptocurrency market has experienced stunning growth, with market value exceeding USD 1.5 trillion. We use a DCC-MGARCH model to examine the return and volatility spillovers across three distinct classes of cryptocurrencies: coins , tokens , and stablecoins . Our results demonstrate that conditional correlations are time-varying, peaking during the COVID-19 pandemic sell-off of March 2020, and that both ARCH and GARCH effects play an important role in determining conditional volatility among cryptocurrencies. We find a bi-directional relationship for returns and long-term (GARCH) spillovers between BTC and ETH, but only a unidirectional short-term (ARCH) spillover effect from BTC to ETH. We also find spillovers from BTC and ETH to USDT, but no influence running in the other direction. Our results suggest that USDT does not currently play an important role in volatility transmission across cryptocurrency markets. We also demonstrate applications of our results to hedging and optimal portfolio construction.

Suggested Citation

  • Lee A. Smales, 2021. "Volatility Spillovers among Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-12, October.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:493-:d:657044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/10/493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/10/493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
    2. Bouri, Elie & Lucey, Brian & Roubaud, David, 2020. "The volatility surprise of leading cryptocurrencies: Transitory and permanent linkages," Finance Research Letters, Elsevier, vol. 33(C).
    3. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    4. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    5. Beneki, Christina & Koulis, Alexandros & Kyriazis, Nikolaos A. & Papadamou, Stephanos, 2019. "Investigating volatility transmission and hedging properties between Bitcoin and Ethereum," Research in International Business and Finance, Elsevier, vol. 48(C), pages 219-227.
    6. Qureshi, Saba & Aftab, Muhammad & Bouri, Elie & Saeed, Tareq, 2020. "Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    7. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    8. Canh, Nguyen Phuc & Wongchoti, Udomsak & Thanh, Su Dinh & Thong, Nguyen Trung, 2019. "Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model," Finance Research Letters, Elsevier, vol. 29(C), pages 90-100.
    9. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    10. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    11. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    12. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    13. Naeem, Muhammad Abubakr & Bouri, Elie & Peng, Zhe & Shahzad, Syed Jawad Hussain & Vo, Xuan Vinh, 2021. "Asymmetric efficiency of cryptocurrencies during COVID19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    14. Smales, L.A., 2019. "Bitcoin as a safe haven: Is it even worth considering?," Finance Research Letters, Elsevier, vol. 30(C), pages 385-393.
    15. Ahmet Sensoy & Thiago Christiano Silva & Shaen Corbet & Benjamin Miranda Tabak, 2021. "High-frequency return and volatility spillovers among cryptocurrencies," Applied Economics, Taylor & Francis Journals, vol. 53(37), pages 4310-4328, August.
    16. Moratis, George, 2021. "Quantifying the spillover effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 38(C).
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    18. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    19. Kumar, Anoop S. & Anandarao, S., 2019. "Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 448-458.
    20. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    21. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    22. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    23. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    24. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    25. Lee Alan Smales, 2020. "One Cryptocurrency to Explain Them All? Understanding the Importance of Bitcoin in Cryptocurrency Returns," Economic Papers, The Economic Society of Australia, vol. 39(2), pages 118-132, June.
    26. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Blasis & Luca Galati & Alexander Webb & Robert I. Webb, 2023. "Intelligent design: stablecoins (in)stability and collateral during market turbulence," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh & Kang, Sang Hoon, 2024. "Spillovers and multiscale relationships among cryptocurrencies: A portfolio implication using high frequency data," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 449-479.
    3. BRIK, Hatem & El OUAKDI, Jihene & FTITI, Zied, 2022. "Roles of stable versus nonstable cryptocurrencies in Bitcoin market dynamics," Research in International Business and Finance, Elsevier, vol. 62(C).
    4. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    5. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    6. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    7. Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    8. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    9. Abubakr Naeem, Muhammad & Iqbal, Najaf & Lucey, Brian M. & Karim, Sitara, 2022. "Good versus bad information transmission in the cryptocurrency market: Evidence from high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    10. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    11. Xu, Qiuhua & Zhang, Yixuan & Zhang, Ziyang, 2021. "Tail-risk spillovers in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 38(C).
    12. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Wanas Al-Jarrah, Idries Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 96-113.
    13. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "Volatility spillovers and other dynamics between cryptocurrencies and the energy and bond markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 1-13.
    14. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
    15. Mudassar Hasan & Muhammad Abubakr Naeem & Muhammad Arif & Syed Jawad Hussain Shahzad & Xuan Vinh Vo, 2022. "Liquidity connectedness in cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    16. Bazán-Palomino, Walter, 2022. "Interdependence, contagion and speculative bubbles in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 49(C).
    17. He, Xie & Hamori, Shigeyuki, 2024. "The higher the better? Hedging and investment strategies in cryptocurrency markets: Insights from higher moment spillovers," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    18. Shahzad, Syed Jawad Hussain & Bouri, Elie & Ahmad, Tanveer & Naeem, Muhammad Abubakr, 2022. "Extreme tail network analysis of cryptocurrencies and trading strategies," Finance Research Letters, Elsevier, vol. 44(C).
    19. Walid Mensi & Mobeen Ur Rehman & Muhammad Shafiullah & Khamis Hamed Al-Yahyaee & Ahmet Sensoy, 2021. "High frequency multiscale relationships among major cryptocurrencies: portfolio management implications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.
    20. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:493-:d:657044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.