Neural Network Predictive Modeling on Dynamic Portfolio Management—A Simulation-Based Portfolio Optimization Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yuchen Zhang & Shigeyuki Hamori, 2020. "The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models," JRFM, MDPI, vol. 13(3), pages 1-16, March.
- Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
- Aleksey Min & Claudia Czado, 2010. "Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 511-546, Fall.
- Dias, Alexandra, 2013. "Market capitalization and Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5248-5260.
- Kyoto Yono & Hiroki Sakaji & Hiroyasu Matsushima & Takashi Shimada & Kiyoshi Izumi, 2020. "Construction of Macroeconomic Uncertainty Indices for Financial Market Analysis Using a Supervised Topic Model," JRFM, MDPI, vol. 13(4), pages 1-18, April.
- Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
- Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
- Muneer Shaik & S. Maheswaran, 2019. "Volatility behavior of asset returns based on robust volatility ratio: Empirical analysis on global stock indices," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1597430-159, January.
- Mihnea S. Andrei & John S. J. Hsu, 2018. "Bayesian Alternatives to the Black-Litterman Model," Papers 1811.09309, arXiv.org, revised Dec 2018.
- Libo Yin, 2016. "Does oil price respond to macroeconomic uncertainty? New evidence," Empirical Economics, Springer, vol. 51(3), pages 921-938, November.
- Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fengmin Xu & Jieao Ma, 2023. "Intelligent option portfolio model with perspective of shadow price and risk-free profit," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018.
"Time series copulas for heteroskedastic data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
- Rub'en Loaiza-Maya & Michael S. Smith & Worapree Maneesoonthorn, 2017. "Time Series Copulas for Heteroskedastic Data," Papers 1701.07152, arXiv.org.
- Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017.
"Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
- Arreola Hernandez, Jose & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Al Janabi, Mazin A. M. & Reboredo, Juan Carlos, 2014. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," MPRA Paper 73399, University Library of Munich, Germany, revised Aug 2016.
- Arreola Hernandez, Jose, 2014. "Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization," Energy Economics, Elsevier, vol. 45(C), pages 528-536.
- Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
- Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
- Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
- Bekiros, Stelios & Hernandez, Jose Arreola & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2015. "Multivariate dependence risk and portfolio optimization: An application to mining stock portfolios," Resources Policy, Elsevier, vol. 46(P2), pages 1-11.
- Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
- Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
- Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
- Nguyen, Hoang & Virbickaitė, Audronė, 2023.
"Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models,"
Energy Economics, Elsevier, vol. 124(C).
- Nguyen, Hoang & Virbickaite, Audrone, 2022. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Working Papers 2022:5, Örebro University, School of Business.
- Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
- Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
- Dong Hwan Oh & Andrew J. Patton, 2017.
"Modeling Dependence in High Dimensions With Factor Copulas,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
- Dong Hwan Oh & Andrew J. Patton, 2015. "Modelling Dependence in High Dimensions with Factor Copulas," Finance and Economics Discussion Series 2015-51, Board of Governors of the Federal Reserve System (U.S.).
- Gómez, M. & Domínguez, M. C., 2015. "Seasonal copula models for the analysis of glacier discharge at King George Island, Antarctica," DES - Working Papers. Statistics and Econometrics. WS ws1513, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016.
"Default probability estimation via pair copula constructions,"
European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
- Luciana Dalla Valle & Maria Elena De Giuli & Claudio Manelli & Claudia Tarantola, 2013. "Default Probability Estimation via Pair Copula Constructions," DEM Working Papers Series 048, University of Pavia, Department of Economics and Management.
- Luciana Dalla Valle & Maria Elena De Giuli & Claudia Tarantola & Claudio Manelli, 2014. "Default Probability Estimation via Pair Copula Constructions," Papers 1405.1309, arXiv.org, revised Aug 2015.
- Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
- Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
- Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
- Małgorzata Doman & Ryszard Doman, 2014. "Dynamic Linkages in the Pairs (GBP/EUR, USD/EUR) and (GBP/USD, EUR/USD): How Do They Change During a Day?," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 33-56, March.
More about this item
Keywords
CVaR; GARCH; Pair Copula; simulation-based optimization; portfolio optimization; risk management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:11:p:285-:d:446580. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.