IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v11y2018i4p67-d177971.html
   My bibliography  Save this article

Between ℙ and ℚ: The ℙ ℚ Measure for Pricing in Asset Liability Management

Author

Listed:
  • Marcel T. P. Van Dijk

    (Ortec Finance, 3011 XB Rotterdam, The Netherlands
    DIAM—Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Cornelis S. L. De Graaf

    (Ortec Finance, 3011 XB Rotterdam, The Netherlands)

  • Cornelis W. Oosterlee

    (DIAM—Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands
    CWI—The Center for Mathematics and Computer Science, 1098 XG Amsterdam, The Netherlands)

Abstract

Insurance companies issue guarantees that need to be valued according to the market expectations. By calibrating option pricing models to the available implied volatility surfaces, one deals with the so-called risk-neutral measure Q , which can be used to generate market consistent values for these guarantees. For asset liability management, insurers also need future values of these guarantees. Next to that, new regulations require insurance companies to value their positions on a one-year horizon. As the option prices at t = 1 are unknown, it is common practice to assume that the parameters of these option pricing models are constant, i.e., the calibrated parameters from time t = 0 are also used to value the guarantees at t = 1 . However, it is well-known that the parameters are not constant and may depend on the state of the market which evolves under the real-world measure P . In this paper, we propose improved regression models that, given a set of market variables such as the VIX index and risk-free interest rates, estimate the calibrated parameters. When the market variables are included in a real-world simulation, one is able to assess the calibrated parameters (and consequently the implied volatility surface) in line with the simulated state of the market. By performing a regression, we are able to predict out-of-sample implied volatility surfaces accurately. Moreover, the impact on the Solvency Capital Requirement has been evaluated for different points in time. The impact depends on the initial state of the market and may vary between −46% and +52%.

Suggested Citation

  • Marcel T. P. Van Dijk & Cornelis S. L. De Graaf & Cornelis W. Oosterlee, 2018. "Between ℙ and ℚ: The ℙ ℚ Measure for Pricing in Asset Liability Management," JRFM, MDPI, vol. 11(4), pages 1-23, October.
  • Handle: RePEc:gam:jjrfmx:v:11:y:2018:i:4:p:67-:d:177971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/11/4/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/11/4/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. S. N. Singor & A. Boer & J. S. C. Alberts & C. W. Oosterlee, 2017. "On the modelling of nested risk-neutral stochastic processes with applications in insurance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(4), pages 302-336, July.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Scott Mixon, 2002. "Factors explaining movements in the implied volatility surface," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(10), pages 915-937, October.
    5. Chris Kenyon & Andrew Green & Mourad Berrahoui, 2015. "Which measure for PFE? The Risk Appetite Measure, A," Papers 1512.06247, arXiv.org.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. Laurent Devineau & Stéphane Loisel, 2009. "Risk aggregation in Solvency II: How to converge the approaches of the internal models and those of the standard formula?," Post-Print hal-00403662, HAL.
    9. Rama Cont & Jose da Fonseca & Valdo Durrleman, 2002. "Stochastic Models of Implied Volatility Surfaces," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 361-377, July.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Carol Alexander & Andreas Kaeck & Leonardo M. Nogueira, 2009. "Model risk adjusted hedge ratios," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(11), pages 1021-1049, November.
    12. Harvey J. Stein, 2016. "Fixing Risk Neutral Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Stentoft, 2020. "Computational Finance," JRFM, MDPI, vol. 13(7), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    3. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    4. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    5. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    6. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    7. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    8. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    9. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    10. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    11. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    12. Alberto Bueno-Guerrero & Steven P. Clark, 2023. "Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps," Mathematics, MDPI, vol. 12(1), pages 1-39, December.
    13. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    14. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    16. Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.
    17. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    18. Boda Kang & Christina Nikitopoulos Sklibosios & Erik Schlogl & Blessing Taruvinga, 2019. "The Impact of Jumps on American Option Pricing: The S&P 100 Options Case," Research Paper Series 397, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
    20. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:11:y:2018:i:4:p:67-:d:177971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.