IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v7y2024i4p33-570d1535129.html
   My bibliography  Save this article

Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany

Author

Listed:
  • Caroline Willich

    (Institute for Energy Conversion and Storage, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany)

Abstract

Hydrogen is set to become an important energy carrier in Germany in the next decades in the country’s quest to reach the target of climate neutrality by 2045. To meet Germany’s potential green hydrogen demand of up to 587 to 1143 TWh by 2045, electrolyser capacities between 7 and 71 GW by 2030 and between 137 to 275 GW by 2050 are required. Presently, the capacities for electrolysis are small (around 153 MW), and even with an increase in electrolysis capacity of >1 GW per year, Germany will still need to import large quantities of hydrogen to meet its future demand. This work examines the expected green hydrogen demand in different sectors, describes the available technologies, and highlights the current situation and challenges that need to be addressed in the next years to reach Germany’s climate goals, with regard to scaling up production, infrastructure development, and transport as well as developing the demand for green hydrogen.

Suggested Citation

  • Caroline Willich, 2024. "Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany," J, MDPI, vol. 7(4), pages 1-25, December.
  • Handle: RePEc:gam:jjopen:v:7:y:2024:i:4:p:33-570:d:1535129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/7/4/33/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/7/4/33/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lozano-Martín, Daniel & Moreau, Alejandro & Chamorro, César R., 2022. "Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models," Renewable Energy, Elsevier, vol. 198(C), pages 1398-1429.
    2. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwonwoo Jang & Jeonghyeon Yang & Beomsoo Kim & Jaesung Kwon, 2024. "Effects of Decanol Blended Diesel Fuel on Engine Efficiency and Pollutant Emissions," Energies, MDPI, vol. 17(24), pages 1-17, December.
    2. Zhou, Yu & Meng, Kai & Liu, Wei & Chen, Ke & Chen, Wenshang & Zhang, Ning & Chen, Ben, 2024. "Multi-objective optimization of comprehensive performance enhancement for proton exchange membrane fuel cell based on machine learning," Renewable Energy, Elsevier, vol. 232(C).
    3. Isabel Pestana da Paixão Cansado & Paulo Alexandre Mira Mourão & José Eduardo Castanheiro & Pedro Francisco Geraldo & Suhas & Silvia Román Suero & Beatriz Ledesma Cano, 2025. "A Review of the Biomass Valorization Hierarchy," Sustainability, MDPI, vol. 17(1), pages 1-29, January.
    4. J. Lemuel Martin & S. Viswanathan, 2023. "Feasibility of Green Hydrogen-Based Synthetic Fuel as a Carbon Utilization Option: An Economic Analysis," Energies, MDPI, vol. 16(17), pages 1-20, September.
    5. Michal Borecki & Mateusz Geca & Li Zan & Przemysław Prus & Michael L. Korwin-Pawlowski, 2024. "Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems," Energies, MDPI, vol. 17(16), pages 1-42, August.
    6. Dovilė Gimžauskaitė & Andrius Tamošiūnas & Justas Eimontas & Mindaugas Aikas & Rolandas Uscila & Vilma Snapkauskienė, 2024. "Bituminous Soil Remediation in the Thermal Plasma Environment," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
    7. Sonia Dell’Aversano & Carlo Villante & Katia Gallucci & Giuseppina Vanga & Andrea Di Giuliano, 2024. "E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition," Energies, MDPI, vol. 17(16), pages 1-43, August.
    8. He, Hongjing & Huang, Yongyi & Nakadomari, Akito & Masrur, Hasan & Krishnan, Narayanan & Hemeida, Ashraf M. & Mikhaylov, Alexey & Senjyu, Tomonobu, 2023. "Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands," Renewable Energy, Elsevier, vol. 202(C), pages 1436-1447.
    9. Kim, Yeonghyun & Qi, Meng & Cho, Jaehyun & Lee, Inkyu & Park, Jinwoo & Moon, Il, 2023. "Process design and analysis for combined hydrogen regasification process and liquid air energy storage," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:7:y:2024:i:4:p:33-570:d:1535129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.