IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v4y2021i4p47-663d664405.html
   My bibliography  Save this article

Energetics of Urban Canopies: A Meteorological Perspective

Author

Listed:
  • Edson R. Marciotto

    (Department of Physics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
    These authors contributed equally to this work.)

  • Marcos Vinicius Bueno de Morais

    (Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile
    These authors contributed equally to this work.)

Abstract

The urban climatology consists not only of the urban canopy temperature but also of wind regime and boundary layer evolution among other secondary variables. The energetic input and response of urbanized areas is rather different to rural or forest areas. In this paper, we outline the physical characteristics of the urban canopy that make its energy balance depart from that of vegetated areas and change local climatology. Among the several canopy characteristics, we focus on the aspect ratio h / d and its effects. The literature and methods of retrieving meteorological quantities in urban areas are reviewed and a number of physical analyzes from conceptual or numerical models are presented. In particular, the existence of a maximum value for the urban heat island intensity is discussed comprehensively. Changes in the local flow and boundary layer evolution due to urbanization are also discussed. The presence of vegetation and water bodies in urban areas are reviewed. The main conclusions are as follows: for increasing h / d , the urban heat island intensity is likely to attain a peak around h / d ≈ 4 and decrease for h / d > 4 ; the temperature at the pedestrian level follows similar behavior; the urban boundary layer grows slowly, which in combination with low wind, can worsen pollution dispersion.

Suggested Citation

  • Edson R. Marciotto & Marcos Vinicius Bueno de Morais, 2021. "Energetics of Urban Canopies: A Meteorological Perspective," J, MDPI, vol. 4(4), pages 1-19, October.
  • Handle: RePEc:gam:jjopen:v:4:y:2021:i:4:p:47-663:d:664405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/4/4/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/4/4/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Masson & Colette Marchadier & Luc Adolphe & Rahim Aguejdad & P. Avner & Marc Bonhomme & Geneviève Bretagne & X. Briottet & B. Bueno & Cécile de Munck & O. Doukari & Stéphane Hallegatte & Julia Hida, 2014. "Adapting cities to climate change: A systemic modelling approach," Post-Print hal-01136215, HAL.
    2. Daria Smolova & Avi Friedman, 2021. "Potential Use of Indoor Living Walls in Canadian Dwellings," J, MDPI, vol. 4(2), pages 1-15, May.
    3. Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    4. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    5. Joanna Badach & Małgorzata Dymnicka & Andrzej Baranowski, 2020. "Urban Vegetation in Air Quality Management: A Review and Policy Framework," Sustainability, MDPI, vol. 12(3), pages 1-28, February.
    6. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    7. Jing Kong & Yongling Zhao & Jan Carmeliet & Chengwang Lei, 2021. "Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otavio Medeiros Sobrinho & Anderson Paulo Rudke & Marcos Vinicius Bueno de Morais & Leila Droprinchinski Martins, 2023. "Meteorological Effects of Green Infrastructure on a Developing Medium Latin American City: A Numerical Modeling Assessment," Sustainability, MDPI, vol. 15(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Bin Li & Weihong Guo & Xiao Liu & Yuqing Zhang & Peter John Russell & Marc Aurel Schnabel, 2021. "Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Jesse M. Keenan, 2018. "Regional resilience trust funds: an exploratory analysis for leveraging insurance surcharges," Environment Systems and Decisions, Springer, vol. 38(1), pages 118-139, March.
    5. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    6. Kevin Raaphorst & Gerben Koers & Gerald Jan Ellen & Amy Oen & Bjørn Kalsnes & Lisa van Well & Jana Koerth & Rutger van der Brugge, 2020. "Mind the Gap: Towards a Typology of Climate Service Usability Gaps," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    7. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    8. Eliza Kalbarczyk & Robert Kalbarczyk, 2020. "Typology of Climate Change Adaptation Measures in Polish Cities up to 2030," Land, MDPI, vol. 9(10), pages 1-18, September.
    9. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Javier Chico-Fernández & Esperanza Ayuga-Téllez, 2022. "Analysis of Pollen Concentrations from Various Tree Pollen Types and Their Interrelation with Different Airborne Pollutants in the Madrid Region (Spain)," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    11. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    12. Dong-Seok Lee & Jae-Hun Jo & Sung-Han Koo & Byung-Yun Lee, 2015. "Development of Climate Indices Using Local Weather Data for Shading Design," Sustainability, MDPI, vol. 7(2), pages 1-16, February.
    13. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    14. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    15. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Yiming Wang & Pengcheng Xiang, 2018. "Urban Sprawl Sustainability of Mountainous Cities in the Context of Climate Change Adaptability Using a Coupled Coordination Model: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    17. Malwina Michalik-Śnieżek & Kamila Adamczyk-Mucha & Rozalia Sowisz & Alicja Bieske-Matejak, 2024. "Green Roofs: Nature-Based Solution or Forced Substitute for Biologically Active Areas? A Case Study of Lublin City, Poland," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    18. Petri, Aaron C. & Wilson, Bev & Koeser, Andrew, 2019. "Planning the urban forest: Adding microclimate simulation to the planner’s toolkit," Land Use Policy, Elsevier, vol. 88(C).
    19. Ken Tamminga & João Cortesão & Michiel Bakx, 2020. "Convivial Greenstreets: A Concept for Climate-Responsive Urban Design," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    20. Karolina Dudzic-Gyurkovich, 2021. "Urban Development and Population Pressure: The Case of Młynówka Królewska Park in Krakow, Poland," Sustainability, MDPI, vol. 13(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:4:y:2021:i:4:p:47-663:d:664405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.