IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v7y2010i4p1520-1539d7770.html
   My bibliography  Save this article

Probabilistic Approaches to Better Quantifying the Results of Epidemiologic Studies

Author

Listed:
  • Paul Gustafson

    (Department of Statistics, University of British Columbia, 333-6356 Agricultural Road, Vancouver, B.C., V6T 1Z2, Canada)

  • Lawrence C. McCandless

    (Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, B.C., V5A 1S6, Canada)

Abstract

Typical statistical analysis of epidemiologic data captures uncertainty due to random sampling variation, but ignores more systematic sources of variation such as selection bias, measurement error, and unobserved confounding. Such sources are often only mentioned via qualitative caveats, perhaps under the heading of ‘study limitations.’ Recently, however, there has been considerable interest and advancement in probabilistic methodologies for more integrated statistical analysis. Such techniques hold the promise of replacing a confidence interval reflecting only random sampling variation with an interval reflecting all, or at least more, sources of uncertainty. We survey and appraise the recent literature in this area, giving some prominence to the use of Bayesian statistical methodology.

Suggested Citation

  • Paul Gustafson & Lawrence C. McCandless, 2010. "Probabilistic Approaches to Better Quantifying the Results of Epidemiologic Studies," IJERPH, MDPI, vol. 7(4), pages 1-20, April.
  • Handle: RePEc:gam:jijerp:v:7:y:2010:i:4:p:1520-1539:d:7770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/7/4/1520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/7/4/1520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Greenland S., 2003. "The Impact of Prior Distributions for Uncontrolled Confounding and Response Bias: A Case Study of the Relation of Wire Codes and Magnetic Fields to Childhood Leukemia," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 47-54, January.
    2. Paul Gustafson & Nhu D. Le & Refik Saskin, 2001. "Case–Control Analysis with Partial Knowledge of Exposure Misclassification Probabilities," Biometrics, The International Biometric Society, vol. 57(2), pages 598-609, June.
    3. Nicola Orsini & Rino Bellocco & Matteo Bottai & Alicja Wolk & Sander Greenland, 2008. "A tool for deterministic and probabilistic sensitivity analysis of epidemiologic studies," Stata Journal, StataCorp LP, vol. 8(1), pages 29-48, February.
    4. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    5. Rosenbaum, Paul R., 2005. "Heterogeneity and Causality: Unit Heterogeneity and Design Sensitivity in Observational Studies," The American Statistician, American Statistical Association, vol. 59, pages 147-152, May.
    6. Paul Gustafson & Nhu D. Le, 2002. "Comparing the Effects of Continuous and Discrete Covariate Mismeasurement, with Emphasis on the Dichotomization of Mismeasured Predictors," Biometrics, The International Biometric Society, vol. 58(4), pages 878-887, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Zhou & Yoo-Mi Chin & James D. Stamey & Joon Jin Song, 2020. "Bayesian sensitivity analysis to unmeasured confounding for misclassified data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 577-596, December.
    2. Paul Gustafson, 2006. "Sample size implications when biases are modelled rather than ignored," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 865-881, October.
    3. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.
    4. John Komlos, 2009. "Recent Trends in Height by Gender and Ethnicity in the US in Relation to Levels of Income," NBER Working Papers 14635, National Bureau of Economic Research, Inc.
    5. Lawrence C. McCandless & Sylvia Richardson & Nicky Best, 2012. "Adjustment for Missing Confounders Using External Validation Data and Propensity Scores," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 40-51, March.
    6. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    7. Donal O'Neill & Olive Sweetman, 2013. "Estimating Obesity Rates in Europe in the Presence of Self-Reporting Errors," Economics Department Working Paper Series n236-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    8. Al-Kandari Noriah M. & Lahiri Partha, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 429-447, September.
    9. Louis Anthony (Tony) Cox, Jr & Douglas A. Popken, 2008. "Overcoming Confirmation Bias in Causal Attribution: A Case Study of Antibiotic Resistance Risks," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1155-1172, October.
    10. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    11. Paul Gustafson & Nhu D. Le, 2002. "Comparing the Effects of Continuous and Discrete Covariate Mismeasurement, with Emphasis on the Dichotomization of Mismeasured Predictors," Biometrics, The International Biometric Society, vol. 58(4), pages 878-887, December.
    12. Carlos Díaz-Venegas, 2014. "Identifying the Confounders of Marginalization and Mortality in Mexico, 2003–2007," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 851-875, September.
    13. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    14. Igor Burstyn & Francesco Barone-Adesi & Frank de Vocht & Paul Gustafson, 2019. "What to Do When Accumulated Exposure Affects Health but Only Its Duration Was Measured? A Case of Linear Regression," IJERPH, MDPI, vol. 16(11), pages 1-16, May.
    15. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
    16. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    17. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
    18. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    19. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    20. Mohummed Shofi Ullah Mazumder, 2022. "The Effects of Microfinance Programs on Recipients’ Livelihoods in Rural Bangladesh," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(3), pages 1383-1418, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:7:y:2010:i:4:p:1520-1539:d:7770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.