The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Colin Cameron, A. & Windmeijer, Frank A. G., 1997. "An R-squared measure of goodness of fit for some common nonlinear regression models," Journal of Econometrics, Elsevier, vol. 77(2), pages 329-342, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Massimiliano Mangone & Anxhelo Diko & Luca Giuliani & Francesco Agostini & Marco Paoloni & Andrea Bernetti & Gabriele Santilli & Marco Conti & Alessio Savina & Giovanni Iudicelli & Carlo Ottonello & V, 2023. "A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging," IJERPH, MDPI, vol. 20(12), pages 1-11, June.
- T. Bradley Willingham & Julie Stowell & George Collier & Deborah Backus, 2024. "Leveraging Emerging Technologies to Expand Accessibility and Improve Precision in Rehabilitation and Exercise for People with Disabilities," IJERPH, MDPI, vol. 21(1), pages 1-28, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ghazi Falah & Michael Hoy & Rakhal Sarker, 2000. "Co-existence in Selected Mixed Arab-Jewish Cities in Israel: By Choice or by Default?," Urban Studies, Urban Studies Journal Limited, vol. 37(4), pages 775-796, April.
- Cowell, Frank & Flachaire, Emmanuel & Bandyopadhyay, Sanghamitra, 2009.
"Goodness-of-fit: an economic approach,"
LSE Research Online Documents on Economics
25433, London School of Economics and Political Science, LSE Library.
- Sanghamitra Bandyopadhyay & Frank A Cowell & Emmanuel Flachaire, 2009. "Goodness-of-Fit: An Economic Approach," STICERD - Distributional Analysis Research Programme Papers 101, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Sanghamitra Bandyopadhyay & Frank A. Cowell & Emmanual Flachaire, 2009. "Goodness-of-Fit: An Economic Approach," Economics Series Working Papers 444, University of Oxford, Department of Economics.
- Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2020. "A theoretical model of natural circulation flow and heat transfer within horizontal evacuated tube considering the secondary flow," Renewable Energy, Elsevier, vol. 147(P1), pages 630-638.
- Burkey, Mark L. & Obeng, Kofi, 2005. "Crash Risk Reduction at Signalized Intersections Using Longitudinal Data," MPRA Paper 36281, University Library of Munich, Germany.
- Daniel Griffith & David Wong, 2007. "Modeling population density across major US cities: a polycentric spatial regression approach," Journal of Geographical Systems, Springer, vol. 9(1), pages 53-75, April.
- John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998.
"An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics,"
Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
- J. Fitzgerald & P. Gottschalk & R. Moffitt, "undated". "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Institute for Research on Poverty Discussion Papers 1156-98, University of Wisconsin Institute for Research on Poverty.
- John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," NBER Technical Working Papers 0220, National Bureau of Economic Research, Inc.
- John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of income Dynamics," Economics Working Paper Archive 379, The Johns Hopkins University,Department of Economics.
- John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1997. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Boston College Working Papers in Economics 394, Boston College Department of Economics.
- Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H., 2011. "Accounting for Heterogeneity in Hedging Behavior: Comparing & Evaluating Grouping Methods," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114787, European Association of Agricultural Economists.
- Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
- Sarker, Rakhal & Surry, Yves R., 2003. "The Fast Decay Process In Recreational Demand Activities And The Use Of Alternative Count Data Models," Working Papers 34147, University of Guelph, Department of Food, Agricultural and Resource Economics.
- Lionel Janin & Benoît Menoni, 2007.
"L e contrôle des concentrations en France : une analyse empirique des avis du Conseil de la concurrence,"
Economie & Prévision, La Documentation Française, vol. 0(2), pages 93-114.
- Benoît Menoni & Lionel Janin, 2007. "Le contrôle des concentrations en France : une analyse empirique des avis du Conseil de la concurrence," Économie et Prévision, Programme National Persée, vol. 178(2), pages 93-114.
- Lionel Janin & Benoît Menoni, 2005. "Le Contrôle des concentrations en France : Une analyse empirique des avis du Conseil de la Concurrence," Working Papers 2005-37, Center for Research in Economics and Statistics.
- Hiau LooiKee & Alessandro Nicita & Marcelo Olarreaga, 2009.
"Estimating Trade Restrictiveness Indices,"
Economic Journal, Royal Economic Society, vol. 119(534), pages 172-199, January.
- Hiau Looi Kee & Alessandro Nicita & Marcelo Olarreaga, 2009. "Estimating Trade Restrictiveness Indices," Economic Journal, Royal Economic Society, vol. 119(534), pages 172-199, January.
- Olarreaga, Marcelo & Nicita, Alessandro & Kee, Hiau Looi, 2006. "Estimating Trade Restrictiveness Indices," CEPR Discussion Papers 5576, C.E.P.R. Discussion Papers.
- Kee, Hiau Looi & Nicita, Alessandro & Olarreaga, Marcelo, 2006. "Estimating trade restrictiveness indices," Policy Research Working Paper Series 3840, The World Bank.
- Dabao Zhang, 2022. "Coefficients of Determination for Mixed-Effects Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 674-689, December.
- Wam, Hilde Karine & Pedersen, Hans Chr. & Hjeljord, Olav, 2012. "Balancing hunting regulations and hunter satisfaction: An integrated biosocioeconomic model to aid in sustainable management," Ecological Economics, Elsevier, vol. 79(C), pages 89-96.
- Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
- Jaimovich, Dany, 2015. "Missing Links, Missing Markets: Evidence of the Transformation Process in the Economic Networks of Gambian Villages," World Development, Elsevier, vol. 66(C), pages 645-664.
- Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
- Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
- Si-Ya Wang & Jun Qiu & Fang-Fang Li, 2018. "Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records," Energies, MDPI, vol. 11(6), pages 1-17, May.
- Scuotto, Veronica & Garcia-Perez, Alexeis & Nespoli, Chiara & Messeni Petruzzelli, Antonio, 2020. "A repositioning organizational knowledge dynamics by functional upgrading and downgrading strategy in global value chain," Journal of International Management, Elsevier, vol. 26(4).
- Jaydev Chetan Zaveri & Shankar Raman Dhanushkodi & C. Ramesh Kumar & Jan Taler & Marek Majdak & Bohdan Węglowski, 2023. "Predicting the Performance of PEM Fuel Cells by Determining Dehydration or Flooding in the Cell Using Machine Learning Models," Energies, MDPI, vol. 16(19), pages 1-16, October.
More about this item
Keywords
artificial intelligence; machine learning; rehabilitation; Barthel Index; algorithms; functional improvement;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:8:p:5575-:d:1127089. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.