IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p4977-d1094755.html
   My bibliography  Save this article

Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China

Author

Listed:
  • Xueling Wu

    (School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China)

  • Junyang Wang

    (School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China)

Abstract

Since the impoundment of the Three Gorges Reservoir area in 2003, the potential risks of geological disasters in the reservoir area have increased significantly, among which the hidden dangers of landslides are particularly prominent. To reduce casualties and damage, efficient and precise landslide susceptibility evaluation methods are important. Multiple ensemble models have been used to evaluate the susceptibility of the upper part of Badong County to landslides. In this study, EasyEnsemble technology was used to solve the imbalance between landslide and nonlandslide sample data. The extracted evaluation factors were input into three bagging, boosting, and stacking ensemble models for training, and landslide susceptibility mapping (LSM) was drawn. According to the importance analysis, the important factors affecting the occurrence of landslides are altitude, terrain surface texture (TST), distance to residences, distance to rivers and land use. The influences of different grid sizes on the susceptibility results were compared, and a larger grid was found to lead to the overfitting of the prediction results. Therefore, a 30 m grid was selected as the evaluation unit. The accuracy, area under the curve (AUC), recall rate, test set precision, and kappa coefficient of a multi-grained cascade forest (gcForest) model with the stacking method were 0.958, 0.991, 0.965, 0.946, and 0.91, respectively, which a significantly better than the values produced by the other models.

Suggested Citation

  • Xueling Wu & Junyang Wang, 2023. "Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4977-:d:1094755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/4977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/4977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suzuki, Tomoya & Ohkura, Yuushi, 2016. "Financial technical indicator based on chaotic bagging predictors for adaptive stock selection in Japanese and American markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 50-66.
    2. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    3. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Liu & Aiping Tang & Ziyuan Huang & Lixin Sun & Xiaosheng Han, 2022. "Discussion on the tree-based machine learning model in the study of landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 887-911, September.
    2. Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    3. Thiago Christiano Silva & Benjamin Miranda Tabak & Idamar Magalhães Ferreira, 2019. "Modeling Investor Behavior Using Machine Learning: Mean-Reversion and Momentum Trading Strategies," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    4. Syaidatul Azwani Zulkafli & Nuriah Abd Majid & Ruslan Rainis, 2023. "Spatial Analysis on the Variances of Landslide Factors Using Geographically Weighted Logistic Regression in Penang Island, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
    5. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    6. Sheela Bhuvanendran Bhagya & Anita Saji Sumi & Sankaran Balaji & Jean Homian Danumah & Romulus Costache & Ambujendran Rajaneesh & Ajayakumar Gokul & Chandini Padmanabhapanicker Chandrasenan & Renata P, 2023. "Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps," Land, MDPI, vol. 12(2), pages 1-29, February.
    7. Helen Cristina Dias & Marcelo Fischer Gramani & Carlos Henrique Grohmann & Carlos Bateira & Bianca Carvalho Vieira, 2021. "Statistical-based shallow landslide susceptibility assessment for a tropical environment: a case study in the southeastern Brazilian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 205-223, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4977-:d:1094755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.