IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3517-d1071137.html
   My bibliography  Save this article

Study on the Fingerprint and Atmospheric Activity of Volatile Organic Compounds from Typical Industrial Emissions

Author

Listed:
  • Xin Gu

    (Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China)

  • Kaitao Chen

    (Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China)

  • Min Cai

    (College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)

  • Zhongyi Yin

    (College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)

  • Xingang Liu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Xingru Li

    (Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China)

Abstract

China is prone to severe surface ozone pollution in summer, so it is very important to understand the source of volatile organic compounds (VOCs) to control ozone formation. In this work, the emission characteristics of 91 VOC components from the plastic products industry, packaging and printing industries, printing ink industry, furniture manufacturing and vehicle manufacturing industries were studied. The results show that there are significant differences between these sources, and for the plastic products industry, alkanes (48%) are the most abundant VOCs. The main emission species in the packaging and printing industry are OVOCs (36%) and alkanes (34%). The proportion of OVOCs in the printing ink (73%) and furniture manufacturing industries (49%) is dominated by VOC emissions; aromatic hydrocarbons (33%), alkanes (33%), and OVOCs (17%) are the main emission species in the vehicle manufacturing industry. At the same time, the ozone generation potential (OFP) and secondary organic aerosol formation potential (SOA) of anthropogenic VOC emissions were evaluated, and the top 10 contributors to OFP and SOA were identified. Toluene, o-xylene, and m-xylene had a significant tendency to form OFP or SOA. Then, a health risk assessment of VOC components was carried out. These data can supplement the existing VOC emission characteristics of anthropogenic emissions, thus enriching the research progress of VOC emission sources.

Suggested Citation

  • Xin Gu & Kaitao Chen & Min Cai & Zhongyi Yin & Xingang Liu & Xingru Li, 2023. "Study on the Fingerprint and Atmospheric Activity of Volatile Organic Compounds from Typical Industrial Emissions," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3517-:d:1071137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiyan Du & Huan Xie & Jiao Li & Xu Guan & Miaomiao Li & Haolin Wang & Xinfeng Wang & Xin Zhang & Qingzhu Zhang, 2024. "The Emission Characteristics of VOCs and Environmental Health Risk Assessment in the Plywood Manufacturing Industry: A Case Study in Shandong Province," Sustainability, MDPI, vol. 16(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    2. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    3. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    4. Poran, A. & Tartakovsky, L., 2017. "Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high-pressure thermochemical recuperation system," Energy, Elsevier, vol. 124(C), pages 214-226.
    5. Sheng Su & Yunshan Ge & Xin Wang & Mengzhu Zhang & Lijun Hao & Jianwei Tan & Fulu Shi & Dongdong Guo & Zhengjun Yang, 2020. "Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions," Energies, MDPI, vol. 13(11), pages 1-15, May.
    6. Natalia Szymlet & Ɓukasz Rymaniak & Beata Kurc, 2024. "Chromatographic Analysis of the Chemical Composition of Exhaust Gas Samples from Urban Two-Wheeled Vehicles," Energies, MDPI, vol. 17(3), pages 1-17, February.
    7. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    8. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
    9. Gong, Changming & Si, Xiankai & Wang, Kang & Wei, Fuxing & Liu, Fenghua, 2018. "Numerical analysis of carbon monoxide, formaldehyde and unburned methanol emissions with ozone addition from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 144(C), pages 432-442.
    10. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3517-:d:1071137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.